Physical Education Teacher’s Continuing Professional Development Affects the Physiological and Cognitive Well-Being of School-Age Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Procedures
- Teaching and Learning Domain (24 h)—an instructional workshop focused on fundamental movement (FM), teaching games for understanding (TGfU), and sport education; PE-related assignments; and the integration of information technology in physical education.
- Student Development Domain (8 h)—a seminar elucidating the understanding of students’ varied necessities alongside workshops and sharing sessions pertaining to the strategizing and organization of student development athletic endeavors.
- School Development Domain (6 h)—exemplary dissemination of home–school collaboration regarding parent-associated educational activities and the functions of physical education and sports as augmenting factors of the educational ethos and institutional reputation.
- Professional Relationships and Services Domain (12 h)—experiential learning through empirical investigation and institutional enlightenment aimed at facilitating the understanding of research findings and optimal methodologies.
2.3. Measures
2.3.1. Motor Tests
2.3.2. Spirometry
2.3.3. Heart Rate Recovery (HRR)
2.3.4. Physical Education Teaching Efficacy Scale (PETES)
2.3.5. Amos 8–15
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reis, L.N.; Reuter, C.P.; Burns, R.D.; Martins, C.M.D.L.; Mota, J.; Gaya, A.C.A.; Silveira, J.F.D.C.; Gaya, A.R. Effects of a physical education intervention on children’s physical activity and fitness: The PROFIT pilot study. BMC Pediatr. 2024, 24, 78. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.H.; Nobre, G.C.; Pessoa, M.L.F.; Soares, Í.A.; Bezerra, J.; Gaya, A.R.; Mota, J.A.; Duncan, M.J.; Martins, C.M. Physical activity during school-time and fundamental movement skills: A study among preschoolers with and without physical education classes. Phys. Educ. Sport Pedagog. 2024, 29, 302–314. [Google Scholar] [CrossRef]
- Kim, S.R.; Choi, S.; Keum, N.; Park, S.M. Combined effects of physical activity and air pollution on cardiovascular disease: A population-based study. J. Am. Heart Assoc. 2020, 9, e013611. [Google Scholar] [CrossRef]
- Lindgren, M.; Börjesson, M. The importance of physical activity and cardiorespiratory fitness for patients with heart failure. Diabetes Res. Clin. Pract. 2021, 176, 108833. [Google Scholar] [CrossRef]
- Strain, T.; Flaxman, S.; Guthold, R.; Semenova, E.; Cowan, M.; Riley, L.M.; Bull, F.C.; Stevens, G.A. National, regional, and global trends in insufficient physical activity among adults from 2000 to 2022: A pooled analysis of 507 population-based surveys with 5 · 7 million participants. Lancet Glob. Health 2024, 12, e1232–e1243. [Google Scholar] [CrossRef]
- Mehta, A.; Kondamudi, N.; Laukkanen, J.A.; Wisloff, U.; Franklin, B.A.; Arena, R.; Lavie, C.J.; Pandey, A. Running away from cardiovascular disease at the right speed: The impact of aerobic physical activity and cardiorespiratory fitness on cardiovascular disease risk and associated subclinical phenotypes. Prog. Cardiovasc. Dis. 2020, 63, 762–774. [Google Scholar] [CrossRef] [PubMed]
- Bahls, M.; Ittermann, T.; Ewert, R.; Stubbe, B.; Völzke, H.; Friedrich, N.; Felix, S.B.; Dörr, M. Physical activity and cardiorespiratory fitness—A ten-year follow-up. Scand. J. Med. Sci. Sports 2021, 31, 742–751. [Google Scholar] [CrossRef]
- Mihailova, A.; Kaminska, I. Lung volumes related to physical activity, physical fitness, aerobic capacity and body mass index in students. In SHS Web of Conferences; EDP Sciences: Les Ulis, France, 2016; Volume 30, p. 00017. [Google Scholar]
- Hancox, R.J.; Rasmussen, F. Does physical fitness enhance lung function in children and young adults? Eur. Respir. J. 2018, 51, 1701374. [Google Scholar] [CrossRef]
- Berntsen, S.; Wisløff, T.; Nafstad, P.; Nystad, W. Lung function increases with increasing level of physical activity in school children. Pediatr. Exerc. Sci. 2008, 20, 402–410. [Google Scholar] [CrossRef]
- Fuertes, E.; Carsin, A.E.; Antó, J.M.; Bono, R.; Corsico, A.G.; Demoly, P.; Gislason, T.; Gullón, J.A.; Janson, C.; Jarvis, D.; et al. Leisure-time vigorous physical activity is associated with better lung function: The prospective ECRHS study. Thorax 2018, 73, 376–384. [Google Scholar] [CrossRef]
- Enright, S.J.; Unnithan, V.B.; Heward, C.; Withnall, L.; Davies, D.H. Effect of high-intensity inspiratory muscle training on lung volumes, diaphragm thickness, and exercise capacity in subjects who are healthy. Phys. Ther. 2006, 86, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Ploughman, M. Exercise is brain food: The effects of physical activity on cognitive function. Dev. Neurorehabilit. 2008, 11, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Bidzan-Bluma, I.; Lipowska, M. Physical activity and cognitive functioning of children: A systematic review. Int. J. Environ. Res. Public Health 2018, 15, 800. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C.H.; Motl, R.W.; Pontifex, M.B.; Posthuma, D.; Stubbe, J.H.; Boomsma, D.I.; De Geus, E.J. Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health Psychol. 2006, 25, 678. [Google Scholar] [CrossRef] [PubMed]
- Cipriano, C.; Kilag, O.K.; Samutya, M.; Macapobre, K.; Villegas, M.A.; Suba-an, J. Physical Activity Interventions in Educational Settings: Effects on Academic Achievement Revisited. Int. Multidiscip. J. Res. Innov. Sustain. Excell. (IMJRISE) 2024, 1, 238–246. [Google Scholar]
- Haverkamp, B.F.; Wiersma, R.; Vertessen, K.; van Ewijk, H.; Oosterlaan, J.; Hartman, E. Effects of physical activity interventions on cognitive outcomes and academic performance in adolescents and young adults: A meta-analysis. J. Sports Sci. 2020, 38, 2637–2660. [Google Scholar] [CrossRef]
- Wassenaar, T.M.; Williamson, W.; Johansen-Berg, H.; Dawes, H.; Roberts, N.; Foster, C.; Sexton, C.E. A critical evaluation of systematic reviews assessing the effect of chronic physical activity on academic achievement, cognition and the brain in children and adolescents: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 79. [Google Scholar] [CrossRef]
- De Bruijn, A.G.; Kostons, D.D.; Van Der Fels, I.M.; Visscher, C.; Oosterlaan, J.; Hartman, E.; Bosker, R.J. Effects of aerobic and cognitively-engaging physical activity on academic skills: A cluster randomized controlled trial. J. Sports Sci. 2020, 38, 1806–1817. [Google Scholar] [CrossRef]
- Mavilidi, M.F.; Drew, R.; Morgan, P.J.; Lubans, D.R.; Schmidt, M.; Riley, N. Effects of different types of classroom physical activity breaks on children’s on-task behaviour, academic achievement and cognition. Acta Paediatr. 2020, 109, 158–165. [Google Scholar] [CrossRef]
- Khan, N.A.; Hillman, C.H. The relation of childhood physical activity and aerobic fitness to brain function and cognition: A review. Pediatr. Exerc. Sci. 2014, 26, 138–146. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behavior; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Zhao, H.; Wu, N.; Haapala, E.A.; Gao, Y. Association between meeting 24-h movement guidelines and health in children and adolescents aged 5–17 years: A systematic review and meta-analysis. Front. Public Health 2024, 12, 1351972. [Google Scholar] [CrossRef]
- Fisher, A.; Boyle, J.M.; Paton, J.Y.; Tomporowski, P.; Watson, C.; McColl, J.H.; Reilly, J.J. Effects of a physical education intervention on cognitive function in young children: Randomized controlled pilot study. BMC Pediatr. 2011, 11, 97. [Google Scholar] [CrossRef]
- Ardoy, D.N.; Fernández-Rodríguez, J.M.; Jiménez-Pavón, D.; Castillo, R.; Ruiz, J.R.; Ortega, F.B. A physical education trial improves adolescents’ cognitive performance and academic achievement: The EDUFIT study. Scand. J. Med. Sci. Sports 2014, 24, e52–e61. [Google Scholar] [CrossRef]
- Reed, J.A.; Maslow, A.L.; Long, S.; Hughey, M. Examining the impact of 45 minutes of daily physical education on cognitive ability, fitness performance, and body composition of African American youth. J. Phys. Act. Health 2013, 10, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Lambourne, K.; Szabo-Reed, A.N. Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. Med. Sci. Sports Exerc. 2016, 48, 1197. [Google Scholar] [CrossRef] [PubMed]
- Castelli, D.M.; Beighle, A. The physical education teacher as school activity director. J. Phys. Educ. Recreat. Danc. 2007, 78, 25–28. [Google Scholar] [CrossRef]
- Demchenko, I.; Maksymchuk, B.; Bilan, V.; Maksymchuk, I.; Kalynovska, I. Training future physical education teachers for professional activities under the conditions of inclusive education. BRAIN Broad Res. Artif. Intell. Neurosci. 2021, 12, 191–213. [Google Scholar] [CrossRef]
- Parker, M.; Patton, K. What research tells us about effective continuing professional development for physical education teachers. In Routledge Handbook of Physical Education Pedagogies; Routledge: London, UK, 2016; pp. 447–460. [Google Scholar]
- Kavanaugh, T.C.; Tomaka, J.; Moralez, E. Professional preparedness and psychosocial beliefs as predictors of quality physical education and recreation services to students with disabilities. Ther. Recreat. J. 2021, 55, 414–431. [Google Scholar] [CrossRef]
- Milana, M.; Klatt, G.; Vatrella, S. Europe’s Lifelong Learning Markets, Governance and Policy; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Bergan, S.; Matei, L. The future of the Bologna process and the European Higher Education Area: New perspectives on a recurring topic. In European Higher Education Area: Challenges for a New Decade; Springer International Publishing: Cham, Switzerland, 2020; pp. 361–373. [Google Scholar]
- Fleming, T. Models of Lifelong Learning 3. Oxf. Handb. Lifelong Learn. 2021, 2, 35. [Google Scholar]
- Conesa, J.; Batalla-Busquets, J.M.; Bañeres, D.; Carrion, C.; Conejero-Arto, I.; del Carmen Cruz Gil, M.; Garcia-Alsina, M.; Gómez-Zúñiga, B.; Martinez-Argüelles, M.J.; Mas, X.; et al. Towards an educational model for lifelong learning. In Advances on P2P, Parallel, Grid, Cloud and Internet Computing: Proceedings of the 14th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC-2019) 14; Springer International Publishing: Cham, Switzerland, 2020; pp. 537–546. [Google Scholar]
- Godbout, P. Emergence of physical literacy in physical education: Some curricular repercussions. Phys. Educ. Sport Pedagog. 2023, 28, 503–516. [Google Scholar] [CrossRef]
- Endres, T.; Leber, J.; Böttger, C.; Rovers, S.; Renkl, A. Improving lifelong learning by fostering students’ learning strategies at university. Psychol. Learn. Teach. 2021, 20, 144–160. [Google Scholar] [CrossRef]
- Calderón, A.; Scanlon, D.; MacPhail, A.; Moody, B. An integrated blended learning approach for physical education teacher education programmes: Teacher educators’ and pre-service teachers’ experiences. Phys. Educ. Sport Pedagog. 2021, 26, 562–577. [Google Scholar] [CrossRef]
- Tolentino, J.C.G.; Sinio, C.D. Implementation of the Revitalized Tertiary Physical Education Program in a Higher Education Institution in Pampanga Grounded on the Statutory Policy of the Commission on Higher Education and UNESCO’s Quality Physical Education Model. Int. J. Multidiscip. Appl. Bus. Educ. Res. 2024, 5, 488–512. [Google Scholar] [CrossRef]
- Caldwell, H.A.; Di Cristofaro, N.A.; Cairney, J.; Bray, S.R.; MacDonald, M.J.; Timmons, B.W. Physical literacy, physical activity, and health indicators in school-age children. Int. J. Environ. Res. Public Health 2020, 17, 5367. [Google Scholar] [CrossRef]
- Annali della Pubblica Istruzione. MIUR—Indicazioni Nazionali per il Curricolo della Scuola Dell’infanzia e del primo ciclo D’istruzione; Numero speciale degli Annali della Pubblica Istruzione, Anno LXXXVIII; Le Monnier: Firenze, Italy, 2012. [Google Scholar]
- Quennerstedt, M.; McCuaig, L.; Mårdh, A. The fantasmatic logics of physical literacy. Sport Educ. Soc. 2021, 26, 846–861. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S. Physical literacy in children and adolescents: Definitions, assessments, and interventions. Eur. Phys. Educ. Rev. 2021, 27, 96–112. [Google Scholar] [CrossRef]
- Fairman, J.C.; Smith, D.J.; Pullen, P.C.; Lebel, S.J. The challenge of keeping teacher professional development relevant. In Leadership for Professional Learning; Routledge: London, UK, 2022; pp. 251–263. [Google Scholar]
- Sancar, R.; Atal, D.; Deryakulu, D. A new framework for teachers’ professional development. Teach. Teach. Educ. 2021, 101, 103305. [Google Scholar] [CrossRef]
- Dixit, S.; Srivastava, S.; Reddy, R.S.; Faghy, M.A.; Tedla, J.; Kakaraparthy, V.N.; Gular, K.; Gupta, K. Correlation between self-reported or supervised physical activity (PA) in non-communicable diseases (NCD) and co-morbidities during COVID-19 pandemic: A Systematic Review. Am. J. Phys. Med. Rehabil. 2024, 10, 1097. [Google Scholar]
- Alhumaid, M.M.; Khoo, S.; Bastos, T. Self-efficacy of pre-service physical education teachers toward inclusion in Saudi Arabia. Sustainability 2020, 12, 3898. [Google Scholar] [CrossRef]
- Latino, F.; Tafuri, F.; Saraiello, E.; Tafuri, D. Classroom-based physical activity as a means to improve self-efficacy and academic achievement among Normal-weight and overweight youth. Nutrients 2023, 15, 2061. [Google Scholar] [CrossRef]
- Latino, F.; Saraiello, E.; Tafuri, F. Outdoor Physical Activity: A Training Method for Learning in an Experiential and Innovative Way. J. Phys. Educ. Sport 2023, 23, 1852–1860. [Google Scholar]
- Medrano-Ureña, M.D.R.; Ortega-Ruiz, R.; Benítez-Sillero, J.D.D. Physical fitness, exercise self-efficacy, and quality of life in adulthood: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 6343. [Google Scholar] [CrossRef] [PubMed]
- Tinning, R. Pedagogy and human movement: Theory, practice, research. Routledge: New York, NY, USA, 2010. [Google Scholar]
- Martin, J.J.; Kulinna, P.H. Self-efficacy theory and the theory of planned behavior: Teaching physically active physical education classes. Res. Q. Exerc. Sport 2004, 75, 288–297. [Google Scholar] [CrossRef]
- Martin, J.J.; Mccaughtry, N.; Hodges-Kulinna, P.; Cothran, D. The influences of professional development on teachers’ self-efficacy toward educational change. Phys. Educ. Sport Pedagog. 2008, 13, 171–190. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191–215. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.A. The impact of an inservice to promote cooperative leaming on the stability of teacher efficacy. Teach. Teach. Educ. 1994, 10, 381–394. [Google Scholar] [CrossRef]
- Muntaner-Mas, A.; Morales, J.S.; Martínez-de-Quel, Ó.; Lubans, D.R.; García-Hermoso, A. Acute effect of physical activity on academic outcomes in school-aged youth: A systematic review and multivariate meta-analysis. Scand. J. Med. Sci. Sports 2024, 34, e14479. [Google Scholar] [CrossRef]
- Anderson, C.L.; Feldman, D.B. Hope and physical exercise: The contributions of hope, self-efficacy, and optimism in accounting for variance in exercise frequency. Psychol. Rep. 2020, 123, 1145–1159. [Google Scholar] [CrossRef]
- Humphries, C.A.; Hebert, E.; Daigle, K.; Martin, J. Development of a physical education teaching efficacy scale. Meas. Phys. Educ. Exerc. Sci. 2012, 16, 284–299. [Google Scholar] [CrossRef]
- Armour, K.; Quennerstedt, M.; Chambers, F.; Makopoulou, K. What is ‘effective’ CPD for contemporary physical education teachers? A Deweyan framework. Sport Educ. Soc. 2017, 22, 799–811. [Google Scholar] [CrossRef]
- Nakamura, F.Y.; Pereira, G.; Chimin, P.; Siqueira-Pereira, T.A.; Simões, H.G.; Bishop, D.J. Estimating the perceived exertion threshold using the OMNI scale. J. Strength Cond. Res. 2010, 24, 1602–1608. [Google Scholar] [CrossRef] [PubMed]
- Agans, J.P.; Stuckey, M.I.; Cairney, J.; Kriellaars, D. Four domains for development for all (4D4D4All): A holistic, physical literacy framework. J. Appl. Sport Psychol. 2024, 36, 880–901. [Google Scholar] [CrossRef]
- Whitehead, M. Definition of physical literacy: Developments and issues. In Physical Literacy across the World; Routledge: London, UK, 2019; pp. 8–18. [Google Scholar]
- Carl, J.; Barratt, J.; Wanner, P.; Toepfer, C.; Cairney, J.; Pfeifer, K. The effectiveness of physical literacy interventions: A systematic review with meta-analysis. Sports Med. 2022, 52, 2965–2999. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Zhang, T.; Lun (Alan) Chu, T.; Zhang, X.; Thomas Thomas, K. Do physically literate adolescents have better academic performance? Percept. Mot. Skills 2019, 126, 585–602. [Google Scholar] [CrossRef]
- Perotta, F.; Corona, F.; Cozzarelli, C. The efficacy of the project motorfit: Educational Actions through physical activity in schools. Sport Sci. 2011, 4, 34–39. [Google Scholar]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of spirometry 2019 update. An official American thoracic society and European respiratory society technical statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef]
- Castro-Piñero, J.; Marin-Jimenez, N.; Fernandez-Santos, J.R.; Martin-Acosta, F.; Segura-Jimenez, V.; Izquierdo-Gomez, R.; Ruiz, J.R.; Cuenca-Garcia, M. Criterion-related validity of field-based fitness tests in adults: A systematic review. J. Clin. Med. 2021, 10, 3743. [Google Scholar] [CrossRef]
- COCIS. Protocolli Cardiologici per il Giudizio di Idoneità allo Sport Agonistico 2003; Casa Editrice Scientifica Internazionale: Roma, Italy, 2023. [Google Scholar]
- Cornoldi, C.; De Beni, R.; Zamperlin, C.; Meneghetti, C. AMOS 8-15. Strumenti di Valutazione di Abilità e Motivazione allo Studio per Studenti Dagli 8 ai 14 Anni; Erickson: Trento, Italy, 2005. [Google Scholar]
- Cohen, J. A Power Primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Li, R.; Liu, H.; Chen, Y.; Yao, M. Teacher engagement and self-efficacy: The mediating role of continuing professional development and moderating role of teaching experience. Curr. Psychol. 2022, 41, 328–337. [Google Scholar] [CrossRef]
- Granziera, H.; Perera, H.N. Relations among teachers’ self-efficacy beliefs, engagement, and work satisfaction: A social cognitive view. Contemp. Educ. Psychol. 2019, 58, 75–84. [Google Scholar] [CrossRef]
- Gümüş, E.; Bellibaş, M.Ş. The relationship between the types of professional development activities teachers participate in and their self-efficacy: A multi-country analysis. Eur. J. Teach. Educ. 2023, 46, 67–94. [Google Scholar] [CrossRef]
- Silva, A.F.; Oliveira, R.; Cataldi, S.; Clemente, F.M.; Latino, F.; Badicu, G.; Greco, G.; Leão, C.; Bonavolontà, V.; Fischetti, F. Weekly variations of well-being and interactions with training and match intensities: A descriptive case study in youth male soccer players. Int. J. Environ. Res. Public Health 2022, 19, 2935. [Google Scholar] [CrossRef] [PubMed]
- Boeve-de Pauw, J.; Olsson, D.; Berglund, T.; Gericke, N. Teachers’ ESD self-efficacy and practices: A longitudinal study on the impact of teacher professional development. Environ. Educ. Res. 2022, 28, 867–885. [Google Scholar] [CrossRef]
- Mardiyah, S.U.K.; Setyawan, H.; García-Jiménez, J.V.; Eken, Ö.; Latino, F.; Pranoto, N.W.; Darmawan, A.; Shidiq, A.A.P.; Rahmatullah, M.I.; Tafuri, F.; et al. Differences in the Implementation of Physical Education (PE) Learning Management Based on Years of Work: Analysis of Differences in the Quality of Quality Assurance Culture. Retos 2024, 55, 797–803. [Google Scholar] [CrossRef]
- Fabriz, S.; Hansen, M.; Heckmann, C.; Mordel, J.; Mendzheritskaya, J.; Stehle, S.; Schulze-Vorberg, L.; Ulrich, I.; Horz, H. How a professional development programme for university teachers impacts their teaching-related self-efficacy, self-concept, and subjective knowledge. High. Educ. Res. Dev. 2021, 40, 738–752. [Google Scholar] [CrossRef]
- Tafuri, F.; Latino, F. School medical service: Strategies to promote psycho physiological well-being. Pediatr. Rep. 2024, 16, 214–231. [Google Scholar] [CrossRef] [PubMed]
- Sharp, S.R.; Rutherford II, G.L.; Echols, K.I. Creative science through inquiry: Improving teacher self-efficacy and outcome expectancy through adaptable, mystery-based professional development. Int. J. Innov. Sci. Math. Educ. 2022, 30. [Google Scholar] [CrossRef]
- Donnell, L.A.; Gettinger, M. Elementary school teachers’ acceptability of school reform: Contribution of belief congruence, self-efficacy, and professional development. Teach. Teach. Educ. 2015, 51, 47–57. [Google Scholar] [CrossRef]
- Lee, S.C.; Su, J.M.; Tsai, S.B.; Lu, T.L.; Dong, W. A comprehensive survey of government auditors’ self-efficacy and professional Development for improving audit quality. SpringerPlus 2016, 5, 1263. [Google Scholar] [CrossRef]
- Rutherford, T.; Long, J.J.; Farkas, G. Teacher value for professional development, self-efficacy, and student outcomes within a digital mathematics intervention. Contemp. Educ. Psychol. 2017, 51, 22–36. [Google Scholar] [CrossRef]
- Sum, K.W.R.; Wallhead, T.; Ha, S.C.A.; Sit, H.P.C. Effects of physical education continuing professional development on teachers’ physical literacy and self-efficacy and students’ learning outcomes. Int. J. Educ. Res. 2018, 88, 1–8. [Google Scholar] [CrossRef]
- Lotter, C.; Smiley, W.; Thompson, S.; Dickenson, T. The impact of a professional development model on middle school science teachers’ efficacy and implementation of inquiry. Int. J. Sci. Educ. 2016, 38, 2712–2741. [Google Scholar] [CrossRef]
- Ravandpour, A. The relationship between EFL teachers’ continuing professional development and their self-efficacy: A structural equation modeling approach. Cogent Psychol. 2019, 6, 1568068. [Google Scholar] [CrossRef]
- Perera, H.N.; Calkins, C.; Part, R. Teacher self-efficacy profiles: Determinants, outcomes, and generalizability across teaching level. Contemp. Educ. Psychol. 2019, 58, 186–203. [Google Scholar] [CrossRef]
- Guskey, T.R. Evaluating Professional Development; Corwin Press: Thousand Oaks, CA, USA, 2000. [Google Scholar]
- Shephard, R.J. Habitual physical activity and academic performance. Nutr. Rev. 1996, 54, S32–S36. [Google Scholar] [CrossRef]
- Latino, F.; Tafuri, F. Physical Activity and Academic Performance in School-Age Children: A Systematic Review. Sustainability 2023, 15, 6616. [Google Scholar] [CrossRef]
- Latino, F.; Tafuri, F. Physical Activity and Cognitive Functioning. Medicina 2024, 60, 216. [Google Scholar] [CrossRef]
- Philippot, A.; Dubois, V.; Lambrechts, K.; Grogna, D.; Robert, A.; Jonckheer, U.; Chakib, W.; Beine, A.; Bleyenheuft, Y.; De Volder, A.G. Impact of physical exercise on depression and anxiety in adolescent inpatients: A randomized controlled trial. J. Affect. Disord. 2022, 301, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Kandola, A.; Stubbs, B. Exercise and anxiety. In Physical Exercise for Human Health; Springer: Singapore, 2020; pp. 345–352. [Google Scholar]
- Mavilidi, M.F.; Ouwehand, K.; Riley, N.; Chandler, P.; Paas, F. Effects of an acute physical activity break on test anxiety and math test performance. Int. J. Environ. Res. Public Health 2020, 17, 1523. [Google Scholar] [CrossRef]
- Masini, A.; Marini, S.; Gori, D.; Leoni, E.; Rochira, A.; Dallolio, L. Evaluation of school-based interventions of active breaks in primary schools: A systematic review and meta-analysis. J. Sci. Med. Sport 2020, 23, 377–384. [Google Scholar] [CrossRef]
- Watson, A.; Timperio, A.; Brown, H.; Best, K.; Hesketh, K.D. Effect of classroom-based physical activity interventions on academic and physical activity outcomes: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 114. [Google Scholar] [CrossRef] [PubMed]
- Destriani, D.; Yusfi, H.; Destriana, D.; Setyawan, H.; García-Jiménez, J.V.; Latino, F.; Tafuri, F.; Wijanarko, T.; Kurniawan, A.W.; Anam, K.; et al. Results of beginner archery skills among adolescents based on gender review and shot distance. Retos Nuevas Tend. Educ. Física Deporte Recreación 2024, 56, 887–894. [Google Scholar] [CrossRef]
- Hillman, C.H.; Snook, E.M.; Jerome, G.J. Acute cardiovascular exercise and executive control function. Int. J. Psychophysiol. 2003, 48, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Pontifex, M.B.; Scudder, M.R.; Drollette, E.S.; Hillman, C.H. Fit and vigilant: The relationship between sedentary behavior and failures in sustained attention during preadolescence. Neuropsychology 2012, 26, 407–413. [Google Scholar] [CrossRef]
- Hillman, C.H.; Pontifex, M.B.; Raine, L.B.; Castelli, D.M.; Hall, E.E.; Kramer, A.F. The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience 2009, 159, 1044. [Google Scholar] [CrossRef]
- Bartholomew, J.B.; Jowers, E.M. Physically active academic lessons in elementary children. Prev. Med. 2011, 52 (Suppl. 1), S51–S54. [Google Scholar] [CrossRef]
- Mahar, M.T.; Murphy, S.K.; Rowe, D.A.; Golden, J.; Shields, A.T.; Raedeke, T.D. Effects of a classroom-based program on physical activity and on-task behavior. Med. Sci. Sports Exerc. 2006, 38, 2086–2094. [Google Scholar] [CrossRef]
- Budde, H.; Voelcker-Rehage, C.; Pietrabyk-Kendziorra, S.; Ribeiro, P.; Tidow, G. Acute coordinative exerciseimprovesattentional performance in adolescents. NeuroscienceLetters 2008, 441, 219–223. [Google Scholar]
- Ellemberg, D.; St-Louis-Deschênes, M. The effect of acute physical exercise on cognitive function during development. Psychol. Sport Exerc. 2010, 11, 122–126. [Google Scholar] [CrossRef]
- Hillman, C.H.; Buck, S.; Themanson, J.; Pontifex, M.; Castelli, D. Aerobic Fitness and Cognitive Development: Event-Related Brain Potential and Task Performance Indices of Executive Control in Preadolescent Children. Dev. Psychol. 2009, 45, 114–129. [Google Scholar] [CrossRef]
- Pesce, C.; Crova, C.; Cereatti, L.; Casella, R.; Bellucci, M. Physical activity and mental performance in preadolescents: Effects of acute exercise on free-recall memory. Ment. Health Phys. Act. 2009, 2, 16–22. [Google Scholar] [CrossRef]
- Fredericks, C.R.; Kokot, S.J.; Krog, S. Using a developmental movement programme to enhance academic skills in grade 1 learners. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2006, 28, 29–42. [Google Scholar] [CrossRef]
- Setyawan, H.; Suyato, S.; Ngatman, N.; Purwanto, S.; Darmawan, A.; Shidiq, A.A.P.; Eken, Ö.; Pavlovic, R.; Latino, F.; Tafuri, F. The effect of implementing physical education class management archery material to improve concentration elementary school students. Retos Nuevas Tend. Educ. Física Deporte Recreación 2024, 56, 879–886. [Google Scholar] [CrossRef]
- Martins, J.; Marques, A.; Rodrigues, A.; Sarmento, H.; Onofre, M.; Carreiro da Costa, F. Exploring the perspectives of physically active and inactive adolescents: How does physical education influence their lifestyles? Sport Educ. Soc. 2018, 23, 505–519. [Google Scholar] [CrossRef]
- Bandeira, A.D.S.; Ravagnani, F.C.D.P.; Barbosa Filho, V.C.; de Oliveira, V.J.M.; de Camargo, E.M.; Tenório, M.C.M.; Sandreschi, P.F.; Dos Santos, P.C.; Ramires, V.V.; Hallal, P.C.; et al. Mapping recommended strategies to promote active and healthy lifestyles through physical education classes: A scoping review. Int. J. Behav. Nutr. Phys. Act. 2022, 19, 36. [Google Scholar] [CrossRef]
- Ho, W.K.Y.; Ahmed, M.D.; Khoo, S.; Tan, C.H.; Dehkordi, M.R.; Gallardo, M.; Lee, K.; Yamaguchi, Y.; Tao, Y.; Shu, C. Towards developing and validating Quality Physical Education in schools—The Asian physical education professionals’ voice. PLoS ONE 2019, 14, e0218158. [Google Scholar] [CrossRef]
- Colella, D. Physical Literacy e stili d’insegnamento. Ri-orientare l’educazione fisica a scuola. Form. Insegn. 2018, 16 (Suppl. 1), 33–42. [Google Scholar]
- Martins, J.; Onofre, M.; Mota, J.; Murphy, C.; Repond, R.M.; Vost, H.; Cremosini, B.; Svrdlim, A.; Markovic, M.; Dudley, D. International approaches to the definition, philosophical tenets, and core elements of physical literacy: A scoping review. Prospects 2021, 50, 13–30. [Google Scholar] [CrossRef]
- Telford, R.D.; Cunningham, R.B.; Fitzgerald, R.; Olive, L.S.; Prosser, L.; Jiang, X.; Telford, R.M. Physical education, obesity, and academic achievement: A 2-year longitudinal investigation of Australian elementary school children. Am. J. Public Health 2012, 102, 368–374. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Hillman, C.H.; Greene, J.L.; Hansen, D.M.; Gibson, C.A.; Sullivan, D.K.; Poggio, J.; Mayo, M.S.; Lambourne, K.; Szabo-Reed, A.N.; et al. Physical activity and academic achievement across the curriculum: Results from a 3-year cluster-randomized trial. Preventive Med. 2017, 99, 140–145. [Google Scholar] [CrossRef]
- Olivier, E.; Archambault, I.; De Clercq, M.; Galand, B. Student self-efficacy, classroom engagement, and academic achievement: Comparing three theoretical frameworks. J. Youth Adolesc. 2019, 48, 326–340. [Google Scholar] [CrossRef] [PubMed]
- Setyawan, H.; Alim, A.M.; Listyarini, A.E.; Suri, P.T.; Mahsusi, J.; Rahmatullah, M.I.; Sugiarto, T.; Shidiq, A.A.P.; Kozina, Z.; Eken, Ö.; et al. Implementation of Archery Class Management at the Pre-Extracurricular Program Stage To Improve Archery Skills of Elementary School Students. Retos 2024, 55, 867–873. [Google Scholar] [CrossRef]
- Neeper, S.A.; Góauctemez-Pinilla, F.; Choi, J.; Cotman, C. Exercise and brain neurotrophins. Nature 1995, 373, 109. [Google Scholar] [CrossRef]
- Winter, B.; Breitenstein, C.; Mooren, F.C.; Voelker, K.; Fobker, M.; Lechtermann, A.; Krueger, K.; Fromme, A.; Korsukewitz, C.; Floel, A.; et al. High impact running improves learning. Neurobiol. Learn. Mem. 2007, 87, 597–609. [Google Scholar] [CrossRef]
- Rodriguez, C.C.; Camargo, E.M.D.; Rodriguez-Añez, C.R.; Reis, R.S. Physical activity, physical fitness and academic achievement in adolescents: A systematic review. Rev. Bras. De Med. Do Esporte 2020, 26, 441–448. [Google Scholar] [CrossRef]
- Bang, H.; Won, D.; Park, S. School engagement, self-esteem, and depression of adolescents: The role of sport participation and volunteering activity and gender differences. Child. Youth Serv. Rev. 2020, 113, 105012. [Google Scholar] [CrossRef]
- León-Zarceño, E.; Moreno-Tenas, A.; Boix Vilella, S.; García-Naveira, A.; Serrano-Rosa, M.A. Habits and psychological factors associated with changes in physical activity due to COVID-19 confinement. Front. Psychol. 2021, 12, 620745. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.; Petrica, J.; Serrano, J.; Batista, M.; Honório, S.; Maia, L. The attention of students during physical education class based on academic performance. Retos Nuevas Tend. Educ. Física Deportes Recreación 2020, 38, 222–228. [Google Scholar]
- El Nady, H.G.; El Refay, A.S.; Salah, D.A.; Fahmy, R.F.; Mansour, S.A.; Sherif, L.S. Impact of Sport Specific Type on Pulmonary Function and Anthropometric Measures of Adolescents. Biomed. Pharmacol. J. 2023, 16, 763–771. [Google Scholar] [CrossRef]
- Latino, F.; Tafuri, F. Wearable Sensors and the Evaluation of Physiological Performance in Elite Field Hockey Players. Sports 2024, 12, 124. [Google Scholar] [CrossRef]
- Mackała, K.; Kurzaj, M.; Okrzymowska, P.; Stodółka, J.; Coh, M.; Rożek-Piechura, K. The effect of respiratory muscle training on the pulmonary function, lung ventilation, and endurance performance of young soccer players. Int. J. Environ. Res. Public Health 2020, 17, 234. [Google Scholar] [CrossRef] [PubMed]
- Bjelıca, B.; Milanović, L.; Aksovıć, N.; Zelenović, M.; Božıć, D. Effects of physical activity to cardiorespiratory changes. Turk. J. Kinesiol. 2020, 6, 164–174. [Google Scholar] [CrossRef]
- Rożek-Piechura, K.; Kurzaj, M.; Okrzymowska, P.; Kucharski, W.; Stodółka, J.; Maćkała, K. Influence of inspiratory muscle training of various intensities on the physical performance of long-distance runners. J. Hum. Kinet. 2020, 75, 127. [Google Scholar] [CrossRef] [PubMed]
- Farì, G.; Di Paolo, S.; Ungaro, D.; Luperto, G.; Farì, E.; Latino, F. The impact of COVID-19 on sport and daily activities in an Italian cohort of football school children. Int. J. Athl. Ther. Train. 2021, 26, 274–278. [Google Scholar] [CrossRef]
- Cataldi, S.; Latino, F.; Greco, G.; Fischetti, F. Multilateral training improves physical fitness and fatigue perception in cancer patients. J. Hum. Sport Exerc. 2019, 14, S916–S926. [Google Scholar]
- Latino, F.; Greco, G.; Fischetti, F.; Cataldi, S. Multilateral training improves body image perception in female adolescents. J. Hum. Sport Exerc. 2019, 14, S927–S936. [Google Scholar] [CrossRef]
- Albarrati, A.M.; Gale, N.S.; Munnery, M.M.; Cockcroft, J.R.; Shale, D.J. Daily physical activity and related risk factors in COPD. BMC Pulm. Med. 2020, 20, 60. [Google Scholar] [CrossRef]
- Latino, F.; Roig, R.M.; Setyawan, H.; Susanto, N.; Anam, K.; Saraiello, E.; Tafuri, F. Physiological responses of wheelchair basketball athletes to a combined aerobic and anaerobic training program. Retos Nuevas Tend. Educ. Física Deporte Recreación 2024, 57, 800–808. [Google Scholar] [CrossRef]
- la Torre, M.E.; Monda, A.; Messina, A.; de Stefano, M.I.; Monda, V.; Moscatelli, F.; Tafuri, F.; Saraiello, E.; Latino, F.; Monda, M.; et al. The potential role of nutrition in overtraining syndrome: A narrative review. Nutrients 2023, 15, 4916. [Google Scholar] [CrossRef]
- Nuriddinov, A. Physical activity, health and environment. Am. J. Soc. Sci. Humanit. Res. 2023, 3, 189–200. [Google Scholar]
- Dapp, L.C.; Gashaj, V.; Roebers, C.M. Physical activity and motor skills in children: A differentiated approach. Psychol. Sport Exerc. 2021, 54, 101916. [Google Scholar] [CrossRef]
- Jones, D.; Innerd, A.; Giles, E.L.; Azevedo, L.B. Association between fundamental motor skills and physical activity in the early years: A systematic review and meta-analysis. J. Sport Health Sci. 2020, 9, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Jean de Dieu, H.; Zhou, K. Physical literacy assessment tools: A systematic literature review for why, what, who, and how. Int. J. Environ. Res. Public Health 2021, 18, 7954. [Google Scholar] [CrossRef] [PubMed]
- Engin, G. An Examination of Primary School Students’ Academic Achievements and Motivation In Terms of Parents’ Attitudes, Teacher Motivation, Teacher Self-efficacy and Leadership Approach. Int. J. Progress. Educ. 2020, 16, 257–276. [Google Scholar] [CrossRef]
- Kaloka, P.T.; Nopembri, S.; Yudanto, Y.; Elumalai, G. Improvement of Executive Function Through Cognitively Challenging Physical Activity with Nonlinear Pedagogy In Elementary Schools. Retos Nuevas Tend. Educ. Física Deporte Recreación 2024, 51, 673–682. [Google Scholar]
- Ahmed, M.A.; Lawal, A.A.; Ahmed, R.A. Influence of teachers’ self-efficacy on secondary school students’ self-efficacy in biology in Ogbomoso, Nigeria. JPBI (J. Pendidik. Biol. Indones.) 2022, 8, 58–64. [Google Scholar] [CrossRef]
ACTIVITIES | |||||||
---|---|---|---|---|---|---|---|
TIME 60 min/biweekly | Cooperative activities | Ball games | Coordination games and exploratory tasks | Physical exercises and leisurely pursuits involving pairs or teams | Dancing | Exercises designed to improve lateralization, control, as well as overall and segmental coordination | Creative activities |
General objective | Team building | Object control | Exercise designed to acquire proficiency in spatial awareness | Exercise structured to foster unity, mutual support within the group, and confidence in others | Engagement in rhythmic tasks and games accompanied by music | Different Exercises designed to improve lateralization, control, as well as overall and segmental coordination | Utilization of the body for conveying, expressing, and portraying both real and imaginary scenarios |
Physical domain | Game arrangements fostering collaboration and expectation | Throw, catch, shoot within different individual exercises, team games | Individual and group arrangements concentrating on static strength and fostering group balance | Game preparations testing personal and group skills | Aesthetic and rhythmic movements | Small team games emphasizing the spectrum of motions encompassing running, throwing, pushing | Mixed games and exercises |
Cognitive domain | Strategy; Planning; Collaborative advancement and functioning with partnership methodologies | Understanding regarding fundamental competencies for ball control | Building up a repertoire of fundamental acrobatic modalities, delineating “physical activity” | Comprehending the physical fitness | Awareness concerning the diversity of movement; formulating dances in alignment with the rhythm | Introduction to understand diverse competencies to engage in physical activity | Reflection about the program |
Psychological domain | Concentrating on accomplishments with the entire group | Personal growth and confidence | Focus on courage, self-perception, and confidence | Cultivating tenacity. | Enjoyment; self-expression | Enjoyment; individual experiences | Personal experiences, emotions, and sentiments; |
Social domain | Communication; respect; address collective obstacles | Engaging in diverse manners collaboratively and in opposition to one another | Fostering communication, cooperation, and integrity | Foster and uplift others, interpersonal connections | Group choreography (communication and collaboration) | Respect; communication | Communication; relationships |
Variable | EG (n = 160) Mean ± SD | CG (n = 160) Mean ± SD |
---|---|---|
Age (y) | 9.55 ± 0.49 | 9.60 ± 0.49 |
Height (cm) | 137.41 ± 6.44 | 138.27 ± 6.86 |
Weight (kg) | 33.81 ± 6.00 | 34.14 ± 6.49 |
Sex, n (%) | ||
Male | 71 (44.38%) | 79 (49.38%) |
Female | 89 (55.63%) | 81 (50.63%) |
Students Experimental Group (n = 160) | Students Control Group (n = 160) | |||||
---|---|---|---|---|---|---|
Baseline | Post-Test | Δ | Baseline | Post-Test | Δ | |
Motorfit | ||||||
Motorfit Locomotor | 8.74 (1.18) | 9.60 (1.04) †* | 0.86 (0.87) | 8.91 (1.67) | 8.73 (1.63) | −0.18 (0.55) |
Motorfit Object | 8.19 (0.90) | 9.51 (0.99) †* | 1.32 (0.91) | 9.38 (1.18) | 8.98 (1.26) | −0.39 (0.62) |
HRR | 29.97 (0.97) | 20.27 (1.06) †* | −5.70 (1.72) | 26.60 (1.69) | 25.36 (1.81) | −1.23 (0.65) |
FEV 1 | 1.87 (0.17) | 2.08 (0.37) †* | 0.21 (0.22) | 1.84 (0.08) | 1.81 (0.08) | −0.02 (0.90) |
FEV 1 (%) | 86.38 (0.63) | 88.85 (2.09) †* | 2.46 (1.68) | 86.02 (1.05) | 85.81 (0.90) | −0.21 (0.90) |
FVC | 3.98 (0.66) | 5.21 (0.16) †* | 1.22 (0.72) | 4.03 (0.63) | 4.03 (0.57) | 0.00 (0.36) |
Amos 8–15—QAS Questionnaire | ||||||
Motivation | 13.46 (1.51) | 15.08 (1.75) †* | 1.61 (0.91) | 13.95 (2.13) | 12.63 (1.87) | −1.32 (1.11) |
Organization | 14.65 (1.44) | 17.01 (1.61) †* | 2.35 (1.29) | 14.65 (2.40) | 13.41 (2.06) | −1.23 (0.88) |
Didactic material development | 14.73 (1.44) | 14.48 (1.60) | −0.25 (0.72) | 14.23 (1.38) | 13.24 (1.39) | −0.98 (1.03) |
Study flexibility | 15.46 (1.44) | 17.21 (1.53) †* | 1.75 (0.82) | 15.52 (1.40) | 13.90 (1.77) | −1.62 (1.01) |
Concentration | 16.61 (1.73) | 17.91 (1.58) †* | 1.30 (0.80) | 16.95 (1.82) | 15.46 (1.95) | −1.48 (1.04) |
Anxiety | 17.17 (1.26) | 15.20 (1.36) †* | −1.96 (1.18) | 15.58 (2.31) | 16.48 (1.92) | 0.89 (1.14) |
Attitude towards school | 15.30 (2.04) | 15.11 (2.12) | −0.18 (0.51) | 16.16 (1.68) | 14.62 (1.83) | −1.53 (0.75) |
Amos 8–15—Objective Study Tests | 17.96 (2.367) | 21.20 (2.93) †* | 3.23 (2.05) | 18.50 (2.55) | 16.39 (2.70) | −2.11 (0.88) |
Student Experimental Group (n = 50) | Teachers Control Group (n = 50) | |||||
---|---|---|---|---|---|---|
Baseline | Post-Test | Δ | Baseline | Post-Test | Δ | |
PETES | ||||||
content knowledge | 16.40 (1.15) | 22.28 (2.54) †* | 5.88 (1.50) | 18.96 (1.05) | 15.80 (2.82) | −3.16 (2.01) |
applying scientific knowledge in teaching PE | 21.00 (1.44) | 29.28 (3.45) †* | 8.28 (2.38) | 24.84 (1.14) | 20.70 (4.82) | −4.96 (5.95) |
accommodating skill level differences | 18.96 (1.05) | 26.96 (3.24) †* | 8.00 (2.29) | 18.96 (1.05) | 16.88 (3.11) | −2.08 (3.17) |
teaching students with special needs | 27.60 (1.52) | 37.52 (4.12) †* | 9.92 (2.95) | 28.32 (1.97) | 26.84 (3.36) | −1.48 (2.64) |
instruction | 37.04 (1.51) | 43.28 (3.88) †* | 6.24 (2.40) | 38.84 (1.37) | 38.04 (2.00) | −0.80 (1.70) |
using assessment | 12.68 (1.02) | 18.56 (2.06) †* | 5.88 (1.23) | 15.60 (1.04) | 14.52 (1.98) | −1.08 (1.80) |
using technology | 41.48 (1.29) | 43.52 (2.46) †* | 2.04 (1.39) | 43.52 (1.08) | 38.96 (8.35) | −4.56 (8.30) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latino, F.; Romano, G.; Tafuri, F. Physical Education Teacher’s Continuing Professional Development Affects the Physiological and Cognitive Well-Being of School-Age Children. Educ. Sci. 2024, 14, 1199. https://doi.org/10.3390/educsci14111199
Latino F, Romano G, Tafuri F. Physical Education Teacher’s Continuing Professional Development Affects the Physiological and Cognitive Well-Being of School-Age Children. Education Sciences. 2024; 14(11):1199. https://doi.org/10.3390/educsci14111199
Chicago/Turabian StyleLatino, Francesca, Generoso Romano, and Francesco Tafuri. 2024. "Physical Education Teacher’s Continuing Professional Development Affects the Physiological and Cognitive Well-Being of School-Age Children" Education Sciences 14, no. 11: 1199. https://doi.org/10.3390/educsci14111199
APA StyleLatino, F., Romano, G., & Tafuri, F. (2024). Physical Education Teacher’s Continuing Professional Development Affects the Physiological and Cognitive Well-Being of School-Age Children. Education Sciences, 14(11), 1199. https://doi.org/10.3390/educsci14111199