The Myth That Only Brilliant People Are Good at Math and Its Implications for Diversity
Abstract
:1. Introduction
2. The Myth that Math Requires Brilliance
3. Consequences of the ‘Math Requires Brilliance’ Myth
4. Where Do the Stereotypes about Intellectual Ability Come From?
5. What Can We Do to Counter the Myth that Math is Only for Brilliant People?
5.1. Emphasize Growth and Learning over Brilliance
5.2. Promote ‘Open’ Approaches to Math in the Classroom
5.3. Expose Children to Role Models
5.4. Be Mindful of the Language Used
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lahey, J. Teaching math to people who think they hate it. Atlantic, 2014. Available online: https://www.theatlantic.com/education/archive/2014/10/teaching-math-to-people-who-thinkthey-hate-it/381125/ (accessed on 24 February 2018).
- Rattan, A.; Good, C.; Dweck, C.S. “It’s ok—Not everyone can be good at math”: Instructors with an entity theory comfort (and demotivate) students. J. Exp. Soc. Psychol. 2012, 48, 731–737. [Google Scholar] [CrossRef]
- Blackwell, L.S.; Trzesniewski, K.H.; Dweck, C.S. Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention. Child Dev. 2007, 78, 246–263. [Google Scholar] [CrossRef] [PubMed]
- Boaler, J. Mathematical Mindsets: Unleashing Students’ Potential through Creative Math, Inspiring Messages and Innovative Teaching; John Wiley & Sons: San Francisco, CA, USA, 2016. [Google Scholar]
- Gustin, W.C. The development of exceptional research mathematicians. In Developing Talent in Young People; Bloom, B.S., Ed.; Ballantine: New York, NY, USA, 1985; pp. 139–192. [Google Scholar]
- Howe, M.J.A.; Davidson, J.W.; Sloboda, J.A. Innate talents: Reality or myth? Behav. Brain Sci. 1998, 21, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Bian, L.; Leslie, S.-J.; Cimpian, A. Gender stereotypes about intellectual ability emerge early and influence children’s interests. Science 2017, 355, 389–391. [Google Scholar] [CrossRef] [PubMed]
- Steele, C.M. Whistling Vivaldi: How Stereotypes Affect Us and What We Can Do; W. W. Norton & Company: New York, NY, USA, 2010. [Google Scholar]
- Leslie, S.; Cimpian, A.; Meyer, M.; Freeland, E. Expectations of brilliance underlie gender distributions across academic disciplines. Science 2015, 347, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Cimpian, A.; Leslie, S.J. The brilliance trap: How a misplaced emphasis on genius subtly discourages women and African-Americans from certain academic fields. Sci. Am. 2017, 317, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Bian, L.; Leslie, S.-J.; Murphy, M.C.; Cimpian, A. Messages about brilliance undermine women’s interest in educational and professional opportunities. J. Exp. Soc. Psychol. 2018, 76, 404–420. [Google Scholar] [CrossRef]
- Rattan, A.; Savani, K.; Naidu, N.V.R.; Dweck, C.S. Can everyone become highly intelligent? Cultural differences in and societal consequences of beliefs about the universal potential for intelligence. J. Person. Soc. Psychol. 2012, 103, 787–803. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.; Cimpian, A.; Leslie, S. Women are underrepresented in fields where success is believed to require brilliance. Front. Psychol. 2015, 6, 235. [Google Scholar] [CrossRef] [PubMed]
- Storage, D.; Horne, Z.; Cimpian, A.; Leslie, S.-J. The frequency of “brilliant” and “genius” in teaching evaluations predicts the representation of women and African Americans across fields. PLoS ONE 2016, 11, e0150194. [Google Scholar] [CrossRef] [PubMed]
- Gunderson, E.A.; Ramirez, G.; Levine, S.; Beilock, S. The role of parents and teachers in the development of gender-related math attitudes. Sex Roles 2012, 66, 153–166. [Google Scholar] [CrossRef]
- Stipek, D.J.; Givvin, K.B.; Salmon, J.M.; MacGyvers, V.L. Teachers’ beliefs and practices related to mathematics instruction. Teach. Teach. Educ. 2001, 17, 213–226. [Google Scholar] [CrossRef]
- Uttal, D.H.; Meadow, N.G.; Tipton, E.; Hand, L.L.; Alden, A.R.; Warren, C.; Newcombe, N.S. The malleability of spatial skills: A meta-analysis of training studies. Psychol. Bull. 2013, 139, 352–402. [Google Scholar] [CrossRef] [PubMed]
- Fennema, E.; Peterson, P.L.; Carpenter, T.P.; Lubinski, C.A. Teachers’ attributions and beliefs about girls, boys, and mathematics. Educ. Stud. Math. 1990, 21, 55–69. [Google Scholar] [CrossRef]
- Del Pinal, G.; Madva, A.; Reuter, K. Stereotypes, conceptual centrality and gender bias: An empirical investigation. Ratio 2017, 30, 384–410. [Google Scholar] [CrossRef]
- Elmore, K.C.; Luna-Lucero, M. Light bulbs or seeds? How metaphors for ideas influence judgments about genius. Soc. Psychol. Person. Sci. 2017, 8, 200–208. [Google Scholar] [CrossRef]
- Parsons, J.E.; Adler, T.F.; Kaczala, C.M. Socialization of achievement attitudes and beliefs: Parental influences. Child Dev. 1982, 53, 310–321. [Google Scholar] [CrossRef]
- Robinson-Cimpian, J.P.; Lubienski, S.T.; Ganley, C.M.; Copur-Gencturk, Y. Teachers’ perceptions of students’ mathematics proficiency may exacerbate early gender gaps in achievement. Dev. Psychol. 2014, 50, 1262–1281. [Google Scholar] [CrossRef] [PubMed]
- Tiedemann, J. Gender-related beliefs of teachers in elementary school mathematics. Educ. Stud. Math. 2000, 41, 191–207. [Google Scholar] [CrossRef]
- Yarkin, K.L.; Town, J.P.; Wallston, B.S. Blacks and women must try harder: Stimulus persons’ race and sex attributions of causality. Person. Soc. Psychol. Bull. 1982, 8, 21–24. [Google Scholar] [CrossRef]
- Cimpian, A.; Leslie, S.J. Response to comment on “Expectations of brilliance underlie gender distributions across academic disciplines”. Science 2015, 349, 391. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.J.; D’Mello, S.D.; Sackett, P.R. A meta-analysis of gender stereotypes and bias in experimental simulations of employment decision making. J. Appl. Psychol. 2015, 100, 128–161. [Google Scholar] [CrossRef] [PubMed]
- Moss-Racusin, C.A.; Dovidio, J.F.; Brescoll, V.L.; Graham, M.J.; Handelsman, J. Science faculty’s subtle gender biases favor male students. Proc. Natl. Acad. Sci. USA 2012, 109, 16474–16479. [Google Scholar] [CrossRef] [PubMed]
- Cvencek, D.; Meltzoff, A.N.; Greenwald, A.G. Math-gender stereotypes in elementary school children. Child Dev. 2011, 82, 766–779. [Google Scholar] [CrossRef] [PubMed]
- Stephens-Davidowitz, S. Google, tell me. Is my son a genius? New York Times, 2014. Available online: https://www.nytimes.com/2014/01/19/opinion/sunday/google-tell-me-is-my-son-a-genius.html (accessed on 24 February 2018).
- Ruffman, T.; Taumoepeau, M.; Perkins, C. Statistical learning as a basis for social understanding in children. Br. J. Dev. Psychol. 2012, 30, 87–104. [Google Scholar] [CrossRef] [PubMed]
- Cimpian, A.; Arce, H.C.; Markman, E.M.; Dweck, C.S. Subtle linguistic cues affect children’s motivation. Psychol. Sci. 2007, 18, 314–316. [Google Scholar] [CrossRef] [PubMed]
- Tversky, A. Features of similarity. Psychol. Rev. 1977, 84, 327–352. [Google Scholar] [CrossRef]
- Gleitman, L.R.; Gleitman, H.; Miller, C.; Ostrin, R. Similar, and similar concepts. Cognition 1996, 58, 321–376. [Google Scholar] [CrossRef]
- Chestnut, E.K.; Markman, E.M. Are horses like zebras, or vice versa? Children’s sensitivity to the asymmetries of directional comparisons. Child Dev. 2016, 87, 568–582. [Google Scholar] [CrossRef] [PubMed]
- Chestnut, E.K.; Remulla, C.; Markman, E.M. Statements of equivalence can imply differences: Asymmetries in directional comparisons. In Proceedings of the 37th Annual Meeting of the Cognitive Science Society, Pasadena, CA, USA, 22–25 July 2015; Cognitive Science Society: Austin, TX, USA, 2015. [Google Scholar]
- Chestnut, E.K. When Attempts to Express Gender Equality Backfire. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2017. [Google Scholar]
- Bhanot, R.; Jovanovic, J. Do parents’ academic gender stereotypes influence whether they intrude on their children’s homework? Sex Roles 2005, 52, 597–607. [Google Scholar] [CrossRef]
- Graham, S.; Barker, G.P. The down side of help: An attributional-developmental analysis of helping behavior as a low-ability cue. J. Educ. Psychol. 1990, 82, 7–14. [Google Scholar] [CrossRef]
- Pomerantz, E.M.; Ruble, D.N. The role of maternal control in the development of sex differences in child self-evaluative factors. Child Dev. 1998, 69, 458–478. [Google Scholar] [CrossRef] [PubMed]
- Gunderson, E.A.; Sorhagen, N.S.; Gripshover, S.J.; Dweck, C.S.; Goldin-Meadow, S.; Levine, S.C. Parent praise to toddlers predicts fourth grade academic achievement via children’s incremental mindsets. Dev. Psychol. 2018, 54, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Dweck, C.S. Mindset: The New Psychology of Success; Ballantine Books: New York, NY, USA, 2006. [Google Scholar]
- Yeager, D.S.; Dweck, C.S. Mindsets that promote resilience: When students believe that personal characteristics can be developed. Educ. Psychol. 2012, 47, 302–314. [Google Scholar] [CrossRef]
- Boaler, J. Rethinking giftedness. YouCubed, 2017. Available online: https://www.youcubed.org/rethinking-giftedness-film/ (accessed on 15 April 2018).
- Mueller, C.; Dweck, C. Praise for intelligence can undermine children’s motivation and performance. J. Person. Soc. Psychol. 1998, 75, 33–52. [Google Scholar] [CrossRef]
- Dweck, C.S. Recognizing and overcoming false growth mindset. Edutopia, 2016. Available online: https://www.edutopia.org/blog/recognizing-overcoming-false-growth-mindset-carol-dweck (accessed on 24 February 2018).
- Amemiya, J.; Wang, M.-T. Why effort praise can backfire in adolescence. Child Dev. Perspect. 2018. [Google Scholar] [CrossRef]
- Boaler, J. Open and closed mathematics: Student experiences and understandings. J. Res. Math. Educ. 1998, 29, 41–62. [Google Scholar] [CrossRef]
- Boaler, J. What’s Math Got to Do with It? How Teachers and Parents Can Transform Mathematics Learning and Inspire Success; Penguin: New York, NY, USA, 2015. [Google Scholar]
- Harackiewicz, J.M.; Canning, E.A.; Tibbetts, Y.; Priniski, S.J.; Hyde, J.S. Closing achievement gaps with a utility-value intervention: Disentangling race and social class. J. Person. Soc. Psychol. 2016, 111, 745–765. [Google Scholar] [CrossRef] [PubMed]
- Good, C.; Rattan, A.; Dweck, C.S. Why do women opt out? Sense of belonging and women’s representation in mathematics. J. Person. Soc. Psychol. 2012, 102, 700–717. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, N. Ingroup experts and peers as social vaccines who inoculate the self-concept: The stereotype inoculation model. Psychol. Inq. 2011, 22, 231–246. [Google Scholar] [CrossRef]
- Betz, D.; Sekaquaptewa, D. My fair physicist? Feminine math and science role models demotivate young girls. Soc. Psychol. Person. Sci. 2012, 3, 738–746. [Google Scholar] [CrossRef]
- Rosette, A.; Tost, L. Agentic women and communal leadership: How role prescriptions confer advantage to top women leaders. J. Appl. Psychol. 2010, 95, 221–235. [Google Scholar] [CrossRef] [PubMed]
- Destin, M.; Oyserman, D. Incentivizing education: Seeing schoolwork as an investment, not a chore. J. Exp. Soc. Psychol. 2010, 46, 846–849. [Google Scholar] [CrossRef] [PubMed]
- Oyserman, D.; Destin, M. Identity-based motivation: Implications for intervention. J. Couns. Psychol. 2010, 38, 1001–1043. [Google Scholar] [CrossRef] [PubMed]
- Strauss, K.; Griffin, M.; Parker, S. Future work selves: How salient hoped-for identities motivate proactive career behaviors. J. Appl. Psychol. 2012, 97, 580–598. [Google Scholar] [CrossRef] [PubMed]
- Pomerantz, E.M.; Kempner, S.G. Mothers’ daily person and process praise: Implications for children’s theory of intelligence and motivation. Dev. Psychol. 2013, 49, 2040–2046. [Google Scholar] [CrossRef] [PubMed]
- Bigler, R.S.; Wright, Y.F. Reading, writing, arithmetic, and racism? Risks and benefits to teaching children about intergroup biases. Child Dev. Perspect. 2014, 8, 18–23. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chestnut, E.K.; Lei, R.F.; Leslie, S.-J.; Cimpian, A. The Myth That Only Brilliant People Are Good at Math and Its Implications for Diversity. Educ. Sci. 2018, 8, 65. https://doi.org/10.3390/educsci8020065
Chestnut EK, Lei RF, Leslie S-J, Cimpian A. The Myth That Only Brilliant People Are Good at Math and Its Implications for Diversity. Education Sciences. 2018; 8(2):65. https://doi.org/10.3390/educsci8020065
Chicago/Turabian StyleChestnut, Eleanor K., Ryan F. Lei, Sarah-Jane Leslie, and Andrei Cimpian. 2018. "The Myth That Only Brilliant People Are Good at Math and Its Implications for Diversity" Education Sciences 8, no. 2: 65. https://doi.org/10.3390/educsci8020065
APA StyleChestnut, E. K., Lei, R. F., Leslie, S. -J., & Cimpian, A. (2018). The Myth That Only Brilliant People Are Good at Math and Its Implications for Diversity. Education Sciences, 8(2), 65. https://doi.org/10.3390/educsci8020065