The Current State of Proteomics and Metabolomics for Inner Ear Health and Disease
Abstract
:1. Introduction
2. Investigating Inner Ear Diseases through Proteomics and Metabolomics
2.1. Meniere’s Disease (MD)
2.2. Ototoxicity
2.3. Noise-Induced Hearing Loss (NIHL)
2.4. Vestibular Schwannoma (VS)
3. Recent Progress and Future Directions in Inner Ear Omics
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, S.; Sivasankar, G.; Dua, G. Review of research on environmental noise standards/policies/guidelines and measurement methodology in high-speed rail. Noise Vib. Worldw. 2022, 53, 487–497. [Google Scholar] [CrossRef]
- Nakashima, T.; Sone, M.; Teranishi, M.; Yoshida, T.; Terasaki, H.; Kondo, M.; Yasuma, T.; Wakabayashi, T.; Nagatani, T.; Naganawa, S. A perspective from magnetic resonance imaging findings of the inner ear: Relationships among cerebrospinal, ocular and inner ear fluids. Auris Nasus Larynx 2012, 39, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Thalmann, I. Proteomics and the inner ear. Dis. Markers 2001, 17, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Curthoys, I.S.; Grant, J.W.; Pastras, C.J.; Brown, D.J.; Burgess, A.M.; Brichta, A.M.; Lim, R. A review of mechanical and synaptic processes in otolith transduction of sound and vibration for clinical VEMP testing. J. Neurophysiol. 2019, 122, 259–276. [Google Scholar] [CrossRef] [PubMed]
- Heine, P.A. Anatomy of the ear. Vet. Clin. Small Anim. Pract. 2004, 34, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Perez-Flores, M.C.; Verschooten, E.; Lee, J.H.; Kim, H.J.; Joris, P.X.; Yamoah, E.N. Intrinsic mechanical sensitivity of mammalian auditory neurons as a contributor to sound-driven neural activity. Elife 2022, 11, e74948. [Google Scholar] [CrossRef] [PubMed]
- Neng, L.; Shi, X. Vascular pathology and hearing disorders. Curr. Opin. Physiol. 2020, 18, 79–84. [Google Scholar] [CrossRef]
- Doncheva, N.T.; Palasca, O.; Yarani, R.; Litman, T.; Anthon, C.; Groenen, M.A.M.; Stadler, P.F.; Pociot, F.; Jensen, L.J.; Gorodkin, J. Human pathways in animal models: Possibilities and limitations. Nucleic Acids Res. 2021, 49, 1859–1871. [Google Scholar] [CrossRef]
- Moshizi, S.A.; Pastras, C.J.; Sharma, R.; Mahmud, M.A.P.; Ryan, R.; Razmjou, A.; Asadnia, M. Recent advancements in bioelectronic devices to interface with the peripheral vestibular system. Biosens. Bioelectron. 2022, 214, 114521. [Google Scholar]
- Petitpré, C.; Faure, L.; Uhl, P.; Fontanet, P.; Filova, I.; Pavlinkova, G.; Adameyko, I.; Hadjab, S.; Lallemend, F. Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification. Nat. Commun. 2022, 13, 3878. [Google Scholar] [CrossRef]
- Gomaa, N.A.; Jimoh, Z.; Campbell, S.; Zenke, J.K.; Szczepek, A.J. Biomarkers for inner ear disorders: Scoping review on the role of biomarkers in hearing and balance disorders. Diagnostics 2020, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Achard, V.; Ceyzériat, K.; Tournier, B.B.; Frisoni, G.B.; Garibotto, V.; Zilli, T. Biomarkers to Evaluate Androgen Deprivation Therapy for Prostate Cancer and Risk of Alzheimer’s Disease and Neurodegeneration: Old Drugs, New Concerns. Front. Oncol. 2021, 11, 734881. [Google Scholar] [CrossRef]
- Mahshid, S.S.; Higazi, A.M.; Ogier, J.M.; Dabdoub, A. Extracellular Biomarkers of Inner Ear Disease and Their Potential for Point-of-Care Diagnostics. Adv. Sci. 2022, 9, 2104033. [Google Scholar] [CrossRef] [PubMed]
- Rolls, E.T.; Rauschecker, J.P.; Deco, G.; Huang, C.-C.; Feng, J. Auditory cortical connectivity in humans. Cereb. Cortex 2023, 33, 6207–6227. [Google Scholar] [CrossRef] [PubMed]
- Szeto, I.Y.Y.; Chu, D.K.H.; Chen, P.; Chu, K.C.; Au, T.Y.K.; Leung, K.K.H.; Huang, Y.-H.; Wynn, S.L.; Mak, A.C.Y.; Chan, Y.-S. SOX9 and SOX10 control fluid homeostasis in the inner ear for hearing through independent and cooperative mechanisms. Proc. Natl. Acad. Sci. USA 2022, 119, e2122121119. [Google Scholar] [CrossRef] [PubMed]
- Kashizadeh, A.; Pastras, C.; Rabiee, N.; Mohseni-Dargah, M.; Mukherjee, P.; Asadnia, M. Potential nanotechnology-based diagnostic and therapeutic approaches for Meniere’s disease. Nanomed. Nanotechnol. Biol. Med. 2022, 46, 102599. [Google Scholar] [CrossRef] [PubMed]
- Al-Amrani, S.; Al-Jabri, Z.; Al-Zaabi, A.; Alshekaili, J.; Al-Khabori, M. Proteomics: Concepts and applications in human medicine. World J. Biol. Chem. 2021, 12, 57. [Google Scholar] [CrossRef] [PubMed]
- van Dieken, A.; Staecker, H.; Schmitt, H.; Harre, J.; Pich, A.; Roßberg, W.; Lenarz, T.; Durisin, M.; Warnecke, A. Bioinformatic analysis of the perilymph proteome to generate a human protein atlas. Front. Cell Dev. Biol. 2022, 10, 871. [Google Scholar] [CrossRef]
- Lay, J.O., Jr.; Liyanage, R.; Borgmann, S.; Wilkins, C.L. Problems with the “omics”. TrAC Trends Anal. Chem. 2006, 25, 1046–1056. [Google Scholar]
- Sun, Y.; Wang, L.; Zhu, T.; Wu, B.; Wang, G.; Luo, Z.; Li, C.; Wei, W.; Liu, Z. Single-cell transcriptomic landscapes of the otic neuronal lineage at multiple early embryonic ages. Cell Rep. 2022, 38, 110542. [Google Scholar] [CrossRef]
- Caspermeyer, J. All Ears: Genetic Bases of Mammalian Inner Ear Evolution. Mol. Biol. Evol. 2019, 36, 2925–2926. [Google Scholar] [CrossRef] [PubMed]
- Low, T.Y.; Syafruddin, S.E.; Mohtar, M.A.; Vellaichamy, A.; A Rahman, N.S.; Pung, Y.-F.; Tan, C.S.H. Recent progress in mass spectrometry-based strategies for elucidating protein–protein interactions. Cell. Mol. Life Sci. 2021, 78, 5325–5339. [Google Scholar] [CrossRef] [PubMed]
- Wojtkiewicz, M.; Berg Luecke, L.; Kelly, M.I.; Gundry, R.L. Facile preparation of peptides for mass spectrometry analysis in bottom-up proteomics workflows. Curr. Protoc. 2021, 1, e85. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Available online: https://www.who.int/ (accessed on 2 February 2024).
- Jiam, N.T.; Rauch, S.D. Inner ear therapeutics and the war on hearing loss: Systemic barriers to success. Front. Neurosci. 2023, 17, 1169122. [Google Scholar] [CrossRef]
- Elliott, K.L.; Fritzsch, B.; Yamoah, E.N.; Zine, A. Age-related hearing loss: Sensory and neural etiology and their interdependence. Front. Aging Neurosci. 2022, 14, 814528. [Google Scholar] [CrossRef]
- Lassaletta, L.; Calvino, M.; Morales-Puebla, J.M.; Lapunzina, P.; Rodriguez-De La Rosa, L.; Varela-Nieto, I.; Martinez-Glez, V. Biomarkers in vestibular schwannoma–associated hearing loss. Front. Neurol. 2019, 10, 978. [Google Scholar] [CrossRef] [PubMed]
- Kersigo, J.; D’Angelo, A.; Gray, B.D.; Soukup, G.A.; Fritzsch, B. The role of sensory organs and the forebrain for the development of the craniofacial shape as revealed by Foxg1-cre-mediated microRNA loss. Genesis 2011, 49, 326–341. [Google Scholar] [CrossRef] [PubMed]
- Shew, M.; Wichova, H.; St Peter, M.; Warnecke, A.; Staecker, H. Distinct microRNA profiles in the perilymph and serum of patients with Menière’s disease. Front. Neurol. 2021, 12, 646928. [Google Scholar] [CrossRef] [PubMed]
- Shew, M.; Warnecke, A.; Lenarz, T.; Schmitt, H.; Gunewardena, S.; Staecker, H. Feasibility of microRNA profiling in human inner ear perilymph. Neuroreport 2018, 29, 894–901. [Google Scholar] [CrossRef]
- De Luca, P.; Cassandro, C.; Ralli, M.; Gioacchini, F.M.; Turchetta, R.; Orlando, M.P.; Iaccarino, I.; Cavaliere, M.; Cassandro, E.; Scarpa, A. Dietary restriction for the treatment of Meniere’s disease. Transl. Med. UniSa 2020, 22, 5. [Google Scholar]
- Kutlubaev, M.A.; Pyykko, I.; Hardy, T.A.; Gürkov, R.J.P.N. Menière’s disease. Pract. Neurol. 2021, 21, 137–142. [Google Scholar] [CrossRef]
- Swain, S.K. Current treatment of Meniere’s disease. Matrix Sci. Medica 2023, 7, 1–6. [Google Scholar] [CrossRef]
- Frejo, L.; Lopez-Escamez, J.A. Recent advances in understanding molecular bases of Ménière’s disease. Fac. Rev. 2023, 12, 11. [Google Scholar] [CrossRef]
- Yang, C.-H.; Yang, M.-Y.; Hwang, C.-F.; Lien, K.-H. Functional and Molecular Markers for Hearing Loss and Vertigo Attacks in Meniere’s Disease. Int. J. Mol. Sci. 2023, 24, 2504. [Google Scholar] [CrossRef]
- Alawieh, A.; Mondello, S.; Kobeissy, F.; Shibbani, K.; Bassim, M. Proteomics studies in inner ear disorders: Pathophysiology and biomarkers. Expert Rev. Proteom. 2015, 12, 185–196. [Google Scholar] [CrossRef]
- Chiarella, G.; Saccomanno, M.; Scumaci, D.; Gaspari, M.; Faniello, M.C.; Quaresima, B.; Di Domenico, M.; Ricciardi, C.; Petrolo, C.; Cassandro, C. Proteomics in Ménière disease. J. Cell. Physiol. 2012, 227, 308–312. [Google Scholar] [CrossRef]
- Flook, M.; Lopez Escamez, J.A. Meniere’s disease: Genetics and the immune system. Curr. Otorhinolaryngol. Rep. 2018, 6, 24–31. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, J.Y.; Lee, H.J.; Gi, M.; Kim, B.G.; Choi, J.Y. Autoimmunity as a candidate for the etiopathogenesis of Meniere’s disease: Detection of autoimmune reactions and diagnostic biomarker candidate. PLoS ONE 2014, 9, e111039. [Google Scholar] [CrossRef]
- Lin, H.-C.; Ren, Y.; Lysaght, A.C.; Kao, S.-Y.; Stankovic, K.M. Proteome of normal human perilymph and perilymph from people with disabling vertigo. PLoS ONE 2019, 14, e0218292. [Google Scholar] [CrossRef]
- Schmitt, H.A.; Pich, A.; Prenzler, N.K.; Lenarz, T.; Harre, J.; Staecker, H.; Durisin, M.; Warnecke, A. Personalized proteomics for precision diagnostics in hearing loss: Disease-specific analysis of human perilymph by mass spectrometry. ACS Omega 2021, 6, 21241–21254. [Google Scholar] [CrossRef]
- Lin, Z.; He, B.; Chen, C.; Wu, Q.; Wang, X.; Hou, M.; Duan, M.; Yang, J.; Sun, L. Potential biomarkers in peripheral blood mononuclear cells of patients with sporadic Ménière’s disease based on proteomics. Acta Oto-Laryngol. 2023, 143, 636–646. [Google Scholar] [CrossRef]
- Mavel, S.; Lefèvre, A.; Bakhos, D.; Dufour-Rainfray, D.; Blasco, H.; Emond, P. Validation of metabolomics analysis of human perilymph fluid using liquid chromatography-mass spectroscopy. Hear. Res. 2018, 367, 129–136. [Google Scholar] [CrossRef]
- Huang, L.; Wang, Q.; Huang, C.; Zhou, Z.; Peng, A.; Zhang, Z. Untargeted Metabolomic Analysis in Endolymphatic Sac Luminal Fluid from Patients with Meniere’s Disease. J. Assoc. Res. Otolaryngol. 2023, 24, 239–251. [Google Scholar] [CrossRef]
- Ganesan, P.; Schmiedge, J.; Manchaiah, V.; Swapna, S.; Dhandayutham, S.; Kothandaraman, P.P. Ototoxicity: A challenge in diagnosis and treatment. J. Audiol. Otol. 2018, 22, 59. [Google Scholar] [CrossRef]
- Rybak, L.P.; Ramkumar, V. Ototoxicity. Kidney Int. 2007, 72, 931–935. [Google Scholar] [CrossRef]
- Ezaki, T.; Nishiumi, S.; Azuma, T.; Yoshida, M. Metabolomics for the early detection of cisplatin-induced nephrotoxicity. Toxicol. Res. 2017, 6, 843–853. [Google Scholar] [CrossRef]
- Jamesdaniel, S.; Ding, D.; Kermany, M.H.; Davidson, B.A.; Knight Iii, P.R.; Salvi, R.; Coling, D.E. Proteomic analysis of the balance between survival and cell death responses in cisplatin-mediated ototoxicity. J. Proteome Res. 2008, 7, 3516–3524. [Google Scholar] [CrossRef]
- Waissbluth, S.; Garnier, D.; Akinpelu, O.V.; Salehi, P.; Daniel, S.J. The impact of erdosteine on cisplatin-induced ototoxicity: A proteomics approach. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 1365–1374. [Google Scholar] [CrossRef]
- Videhult Pierre, P.; Haglöf, J.; Linder, B.; Engskog, M.K.R.; Arvidsson, T.; Pettersson, C.; Fransson, A.; Laurell, G. Cisplatin-induced metabolome changes in serum: An experimental approach to identify markers for ototoxicity. Acta Oto-Laryngol. 2017, 137, 1024–1030. [Google Scholar] [CrossRef]
- Cui, C.; Zhu, L.; Wang, Q.; Liu, R.; Xie, D.; Guo, Y.; Yu, D.; Wang, C.; Chen, D.; Jiang, P. A GC–MS-based untargeted metabolomics approach for comprehensive metabolic profiling of vancomycin-induced toxicity in mice. Heliyon 2022, 8, e09869. [Google Scholar] [CrossRef]
- Rabinowitz, P.M. Noise-induced hearing loss. Am. Fam. Physician 2000, 61, 2749–2756. [Google Scholar]
- Ding, T.; Yan, A.; Liu, K. What is noise-induced hearing loss? Br. J. Hosp. Med. 2019, 80, 525–529. [Google Scholar] [CrossRef]
- Jamesdaniel, S.; Hu, B.; Kermany, M.H.; Jiang, H.; Ding, D.; Coling, D.; Salvi, R. Noise induced changes in the expression of p38/MAPK signaling proteins in the sensory epithelium of the inner ear. J. Proteom. 2011, 75, 410–424. [Google Scholar] [CrossRef]
- Yeo, N.K.; Ahn, Y.S.; Kim, J.W.; Choi, S.H.; Lim, G.C.; Chung, J.W. Proteomic Analysis of the Protein Expression in the Cochlea of Noise-Exposed Mice. Korean J. Audiol. 2011, 15, 107–113. [Google Scholar]
- Miao, L.; Zhang, J.; Yin, L.; Pu, Y. TMT-based quantitative proteomics reveals cochlear protein profile alterations in mice with noise-induced hearing loss. Int. J. Environ. Res. Public Health 2022, 19, 382. [Google Scholar] [CrossRef]
- Tumane, R.G.; Thakkar, L.; Pingle, S.K.; Jain, R.K.; Jawade, A.A.; Raje, D.V. Expression of serum proteins in noise induced hearing loss workers of mining based industry. J. Proteom. 2021, 240, 104185. [Google Scholar] [CrossRef]
- Fujita, T.; Yamashita, D.; Irino, Y.; Kitamoto, J.; Fukuda, Y.; Inokuchi, G.; Hasegawa, S.; Otsuki, N.; Yoshida, M.; Nibu, K.-I. Metabolomic profiling in inner ear fluid by gas chromatography/mass spectrometry in guinea pig cochlea. Neurosci. Lett. 2015, 606, 188–193. [Google Scholar] [CrossRef]
- Pirttilä, K.; Videhult Pierre, P.; Haglöf, J.; Engskog, M.; Hedeland, M.; Laurell, G.; Arvidsson, T.; Pettersson, C. An LCMS-based untargeted metabolomics protocol for cochlear perilymph: Highlighting metabolic effects of hydrogen gas on the inner ear of noise exposed Guinea pigs. Metabolomics 2019, 15, 138. [Google Scholar] [CrossRef]
- Ji, L.; Lee, H.-J.; Wan, G.; Wang, G.-P.; Zhang, L.; Sajjakulnukit, P.; Schacht, J.; Lyssiotis, C.A.; Corfas, G. Auditory metabolomics, an approach to identify acute molecular effects of noise trauma. Sci. Rep. 2019, 9, 9273. [Google Scholar] [CrossRef]
- Miao, L.; Zhang, J.; Yin, L.; Pu, Y. Metabolomics analysis reveals alterations in cochlear metabolic profiling in mice with noise-induced hearing loss. BioMed Res. Int. 2022, 2022, 9548316. [Google Scholar] [CrossRef]
- Boullaud, L.; Blasco, H.; Caillaud, E.; Emond, P.; Bakhos, D. Immediate-Early Modifications to the Metabolomic Profile of the Perilymph Following an Acoustic Trauma in a Sheep Model. J. Clin. Med. 2022, 11, 4668. [Google Scholar] [CrossRef]
- Zhang, X.; Li, N.; Cui, Y.; Wu, H.; Jiao, J.; Yu, Y.; Gu, G.; Chen, G.; Zhang, H.; Yu, S. Plasma metabolomics analyses highlight the multifaceted effects of noise exposure and the diagnostic power of dysregulated metabolites for noise-induced hearing loss in steel workers. Front. Mol. Biosci. 2022, 9, 907832. [Google Scholar] [CrossRef]
- Miao, L.; Wang, B.; Zhang, J.; Yin, L.; Pu, Y. Plasma metabolomic profiling in workers with noise-induced hearing loss: A pilot study. Environ. Sci. Pollut. Res. 2021, 28, 68539–68550. [Google Scholar] [CrossRef]
- Li, N.; Zhang, X.; Cui, Y.; Wu, H.; Yu, Y.; Yu, S. Dysregulations of metabolites and gut microbes and their associations in rats with noise induced hearing loss. Front. Microbiol. 2023, 14, 1229407. [Google Scholar] [CrossRef]
- Carlson, M.L.; Link, M.J. Vestibular schwannomas. New Engl. J. Med. 2021, 384, 1335–1348. [Google Scholar] [CrossRef]
- Paldor, I.; Chen, A.S.; Kaye, A.H. Growth rate of vestibular schwannoma. J. Clin. Neurosci. 2016, 32, 1–8. [Google Scholar] [CrossRef]
- Kersigo, J.; Gu, L.; Xu, L.; Pan, N.; Vijayakuma, S.; Jones, T.; Shibata, S.B.; Fritzsch, B.; Hansen, M.R. Effects of Neurod1 expression on mouse and human schwannoma cells. Laryngoscope 2021, 131, E259–E270. [Google Scholar] [CrossRef]
- Pandrangi, V.C.; Han, A.Y.; Alonso, J.E.; Peng, K.A.; John, M.A.S. An update on epidemiology and management trends of vestibular schwannomas. Otol. Neurotol. 2020, 41, 411–417. [Google Scholar] [CrossRef]
- Lysaght, A.C.; Kao, S.-Y.; Paulo, J.A.; Merchant, S.N.; Steen, H.; Stankovic, K.M. Proteome of human perilymph. J. Proteome Res. 2011, 10, 3845–3851. [Google Scholar] [CrossRef]
- Kazemizadeh Gol, M.A.; Lund, T.C.; Levine, S.C.; Adams, M.E. Quantitative proteomics of vestibular schwannoma cerebrospinal fluid: A pilot study. Otolaryngol. Head Neck Surg. 2016, 154, 902–906. [Google Scholar] [CrossRef]
- Huang, X.; Xu, J.; Shen, Y.; Zhang, L.; Xu, M.; Chen, M.; Ren, J.; Zhou, L.; Gong, H.; Zhong, P. Protein profiling of cerebrospinal fluid from patients undergoing vestibular schwannoma surgery and clinical significance. Biomed. Pharmacother. 2019, 116, 108985. [Google Scholar] [CrossRef]
- Edvardsson Rasmussen, J.; Laurell, G.; Rask-Andersen, H.; Bergquist, J.; Eriksson, P.O. The proteome of perilymph in patients with vestibular schwannoma. A possibility to identify biomarkers for tumor associated hearing loss? PLoS ONE 2018, 13, e0198442. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Shi, Y.; Yin, D.; Dai, P.; Zhao, W.; Zhang, T. Identification of predictive proteins and biological pathways for the tumorigenicity of vestibular schwannoma by proteomic profiling. Proteom. Clin. Appl. 2019, 13, 1800175. [Google Scholar] [CrossRef]
- Seo, J.-H.; Park, K.-H.; Jeon, E.-J.; Chang, K.-H.; Lee, H.; Lee, W.; Park, Y.-S. Proteomic analysis of vestibular schwannoma: Conflicting role of apoptosis on the pathophysiology of sporadic vestibular schwannoma. Otol. Neurotol. 2015, 36, 714–719. [Google Scholar] [CrossRef]
- Yan, S.; Wang, Q.; Huo, Z.; Yang, T.; Yin, X.; Wang, Z.; Zhang, Z.; Wu, H. Gene expression profiles between cystic and solid vestibular schwannoma indicate susceptible molecules and pathways in the cystic formation of vestibular schwannoma. Funct. Integr. Genom. 2019, 19, 673–684. [Google Scholar] [CrossRef]
- Xu, J.; Ma, J.; Shi, Y.; Yin, D.; Zhang, Y.; Dai, P.; Zhao, W.; Zhang, T. Differential Protein Expression between Cystic and Solid Vestibular Schwannoma Using Tandem Mass Tag-Based Quantitative Proteomic Analysis. Proteom. Clin. Appl. 2020, 14, 1900112. [Google Scholar] [CrossRef]
- Sommella, E.; Salviati, E.; Caponigro, V.; Grimaldi, M.; Musella, S.; Bertamino, A.; Cacace, L.; Palladino, R.; Mauro, G.D.; Marini, F. MALDI Mass Spectrometry Imaging highlights specific metabolome and lipidome profiles in salivary gland tumor tissues. Metabolites 2022, 12, 530. [Google Scholar] [CrossRef]
- Low, V.; Li, Z.; Blenis, J. Metabolite activation of tumorigenic signaling pathways in the tumor microenvironment. Sci. Signal. 2022, 15, eabj4220. [Google Scholar] [CrossRef]
- Sato, H.; Shimizu, A.; Okawa, T.; Uzu, M.; Goto, M.; Hisaka, A. Metabolome Shift in Both Metastatic Breast Cancer Cells and Astrocytes Which May Contribute to the Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 7430. [Google Scholar] [CrossRef]
- Dastmalchi, F.; Deleyrolle, L.P.; Karachi, A.; Mitchell, D.A.; Rahman, M. Metabolomics monitoring of treatment response to brain tumor immunotherapy. Front. Oncol. 2021, 11, 691246. [Google Scholar] [CrossRef]
- Tipirneni, K.E.; Nicholas, B.D. Otologic Changes and Disorders. In Geriatric Medicine: A Person Centered Evidence Based Approach; Springer: Berlin/Heidelberg, Germany, 2024; pp. 691–708. [Google Scholar]
- Wang, C.; Qiu, J.; Li, G.; Wang, J.; Liu, D.; Chen, L.; Song, X.; Cui, L.; Sun, Y. Application and prospect of quasi-targeted metabolomics in age-related hearing loss. Hear. Res. 2022, 424, 108604. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Y.; Jiang, R. Diagnostic and predictive values of serum metabolic profiles in sudden sensorineural hearing loss patients. Front. Mol. Biosci. 2022, 9, 982561. [Google Scholar] [CrossRef]
- Sinha, A.; Mann, M. A beginner’s guide to mass spectrometry–based proteomics. Biochem. 2020, 42, 64–69. [Google Scholar] [CrossRef]
- Carbonara, K.; Andonovski, M.; Coorssen, J.R. Proteomes are of proteoforms: Embracing the complexity. Proteomes 2021, 9, 38. [Google Scholar] [CrossRef]
- Chen, W.; Ding, Z.; Zang, Y.; Liu, X. Characterization of proteoform post-translational modifications by top-down and bottom-up mass spectrometry in conjunction with UniProt annotations. bioRxiv 2023, 22, 3178–3189. [Google Scholar]
- Cassidy, L.; Kaulich, P.T.; Tholey, A. Proteoforms expand the world of microproteins and short open reading frame-encoded peptides. Iscience 2023, 26, 106069. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, W.; Zhao, Y.; Wang, X.; Guo, G. Technology development trend of electrospray ionization mass spectrometry for single-cell proteomics. TrAC Trends Anal. Chem. 2022, 159, 116913. [Google Scholar] [CrossRef]
- Zhu, Y.; Scheibinger, M.; Ellwanger, D.C.; Krey, J.F.; Choi, D.; Kelly, R.T.; Heller, S.; Barr-Gillespie, P.G. Single-cell proteomics reveals changes in expression during hair-cell development. Elife 2019, 8, e50777. [Google Scholar] [CrossRef]
- Arambula, A.M.; Gu, S.; Warnecke, A.; Schmitt, H.A.; Staecker, H.; Hoa, M. In Silico Localization of Perilymph Proteins Enriched in Meńieŕe Disease Using Mammalian Cochlear Single-cell Transcriptomics. Otol. Neurotol. Open 2023, 3, e027. [Google Scholar] [CrossRef]
- Chan, P.P.Y.; Wasinger, V.C.; Leong, R.W. Current application of proteomics in biomarker discovery for inflammatory bowel disease. World J. Gastrointest. Pathophysiol. 2016, 7, 27. [Google Scholar] [CrossRef]
- Lill, J.R.; Mathews, W.R.; Rose, C.M.; Schirle, M. Proteomics in the pharmaceutical and biotechnology industry: A look to the next decade. Expert Rev. Proteom. 2021, 18, 503–526. [Google Scholar] [CrossRef]
- Sinha, A.; Singh, C.; Parmar, D.; Singh, M.P. Proteomics in clinical interventions: Achievements and limitations in biomarker development. Life Sci. 2007, 80, 1345–1354. [Google Scholar] [CrossRef]
- Gramolini, A.O.; Peterman, S.M.; Kislinger, T. Mass spectrometry–based proteomics: A useful tool for biomarker discovery? Clin. Pharmacol. Ther. 2008, 83, 758–760. [Google Scholar] [CrossRef]
- Peter, M.S.; Warnecke, A.; Staecker, H. A window of opportunity: Perilymph sampling from the round window membrane can advance inner ear diagnostics and therapeutics. J. Clin. Med. 2022, 11, 316. [Google Scholar] [CrossRef]
- Shi, X. Physiopathology of the cochlear microcirculation. Hear. Res. 2011, 282, 10–24. [Google Scholar] [CrossRef]
- Hirose, K.; Hartsock, J.J.; Johnson, S.; Santi, P.; Salt, A.N. Systemic lipopolysaccharide compromises the blood-labyrinth barrier and increases entry of serum fluorescein into the perilymph. J. Assoc. Res. Otolaryngol. 2014, 15, 707–719. [Google Scholar] [CrossRef]
- Shi, X.; Wang, Z.; Ren, W.; Chen, L.; Xu, C.; Li, M.; Fan, S.; Xu, Y.; Chen, M.; Zheng, F. LDL receptor-related protein 1 (LRP1), a novel target for opening the blood-labyrinth barrier (BLB). Signal Transduct. Target. Ther. 2022, 7, 175. [Google Scholar] [CrossRef]
- Mulry, E.; Parham, K. Inner ear proteins as potential biomarkers. Otol. Neurotol. 2020, 41, 145–152. [Google Scholar] [CrossRef]
- Thalmann, I. Inner ear proteomics: A fad or hear to stay. Brain Res. 2006, 1091, 103–112. [Google Scholar] [CrossRef]
Disease | Participants | Sample | Method | Expression Protein Changes/Key Proteins | Ref |
---|---|---|---|---|---|
Meniere’s disease (MD) | Human | Plasma | 2-DE and LC-MS/MS | Upregulation of complement factors H and B, fibrinogen alpha and gamma chains, beta-actin, and pigment epithelium-derived factors Downregulation of beta-2 glycoprotein-1, vitamin D binding protein, and apolipoprotein-1 | [37] |
Endolymphatic fluid | 1-DE and LC-MS/MS | Upregulation of immunoglobulin (Including IgM, Ig kappa light chain variable region, Ig heavy chain variable region; VH3 family, Ig heavy chain VHDJ region, AF1 non-allergic IgE heavy chain IGHV3-74) and interferon regulatory factor 7 | [39] | ||
Perilymphatic fluid | SDS-PAGE and HPLC-MS/MS | Upregulation of AACT, HGFAC, EFEMP1, and TGFBI | [40] | ||
LC-MS | Upregulation of short-chain dehydrogenase/reductase family 9C member 7 (SDR9C7) | [41] | |||
Ototoxicity | Rat | Cochlear tissue | Antibody microarray | Upregulation of ATF2, JAB1, Mdm2, Rsk1, SUMO-1, myosin VI, p21WAF1Cip1, PRMT4, reelin, Tal, granzyme B, SLIPR/MAGI3 and RIP Downregulation of active caspase 3, EGF-epidermal growth factor, p35, and ubiquitin C-terminal hydrolase L1 | [48] |
SDS-PAGE and LC-MS/MS | Upregulation of Ba1-647, fibrinogen alpha chain isoform 2 precursor, tropomyosin-1, perlecan (heparan sulfate proteoglycan 2), Ab2-131, acid ceramidase precursor and Alpha-parvin. Downregulation of Rab2A, Rab6A, Cd81, ribosomal protein S5, isoform CRA_b, myelin basic protein, glycerol-3-phosphate dehydrogenase [NAD+], Ras-related protein Rap-1b precursor, H2A histone family (member X and member Y2), tenascin-R precursor, and eosinophil peroxidase precursor, | [49] | |||
Noise-induced hearing loss (NIHL) | Chinchillas | Cochlear tissue | Antibody microarray | Upregulation of FAK p–Tyr577, E2F3, hMps1, serine-threonine protein phosphatase 1b, activated p38/MAPK, WSTF and Fas, aurora B, BID, HDAC10, and ADAM17 Downregulation of E2F3, tropomyosin, CD146, hnRNPA1, cytokeratin 8 12, PRMT1, serine-threonine protein phosphatase 2 A/B, NG2, brain nitric oxide synthase, DEDAF and plakoglobin | [54] |
Mouse | Cochlear tissue | 2-DE and MALDI-TOF MS | Upregulation of angiopoietin-like 1, heat shock 70 kDa protein, tyrosine-protein kinase MEG2, NaDC-1, myeloid Elf-1-like factor, ALCAM, metalloproteinase domain 7, and disintegrin. | [55] | |
Cochlear tissue | TMT-labelling and LC-MS/MS | Upregulation of TNF -α, IL-6, ITGA1, KNG1, CFI, Downregulation of FGF1, AKT2, and ATG5 | [56] | ||
Human | Serum | 2-DE and LC-MS/MS | Plexin domain-containing protein 1, DNA oxidative demethylase, trifunctional purine biosynthetic protein adenosine 3, protein UNC 45, lysine specific demethylase 3A, coiled-coil domain-containing protein 62, and Myo 15 (Myosin) | [57] | |
2-DE and MALDI-TOF MS | Upregulation of transthyretin, E3 ubiquitin protein ligase, albumin, transferrin, kininogen 1, enkurin, and serpin peptidase inhibitor clade A (alpha 1 antiproteinase antitrypsin) member 3 isoform CRA_b | [57] | |||
Vestibular Schwannoma (VS) | Human | CSF | iTRAQ and MS/MS | Upregulation of fibronectin 1, chitinase 3–like protein 1 precursor, clusterin preproprotein, gelsolin isoform a precursor, Ig lambda-like polypeptide 5 isoform 1, haemoglobin subunit alpha, and haptoglobin isoform 1 preproprotein Downregulation of alpha-1-acid glycoprotein 1 precursor, Lysozyme C precursor, Secretogranin-1 precursor, and Keratin | [71] |
iQTRAQ and LC-MS/MS | Upregulation of apolipoprotein A–I (APOA1), ABCA3, CA2D1 and KLF11 Downregulation of BASP1 and PRDX2 | [72] | |||
Perilymphatic fluid | LC-MS | Expression of alpha-2-HS-glycoprotein | [73] | ||
Vestibular tissue | iTRAQ and LC-MS/MS | Upregulation of LGALS1, ANXA1, ANXA2, GRB2, STAT1, and SPARC Downregulation of CAV1 | [74] | ||
Vestibular tissue | 2-DE and MALDI-TOF MS | Upregulation of Annexin V, Annexin A4, Annexin A2 isoform 2, YWHAZ protein, ARHGDIA, and HSP27 Downregulation of Peroxiredoxin 6 | [75] | ||
Tissue | TMT-labelling and LC-MS/MS | Downregulation of COL1A1 and COL1A2 in CVS patients | [77] |
Disease | Participants | Sample | Method | Key Findings | Ref |
---|---|---|---|---|---|
Meniere’s disease (MD) | Human | Perilymphatic fluid | LC-MS | Upregulation of asparagine, lactic acid, valine carnitine, trigonelline, creatinine, glutamine, alanine, hypoxanthine, phenylalanine, sorbic acid, suberic acid, alpha-D-glucose, proline, 5-hydroxylysine, histidine, O-acetyl-l-carnitine, adipic acid, 3-methyglutaric acid, pimelic acid, N-acetyl-l-leucine, and arginine | [43] |
Endolymphatic sac luminal Fluid | LC-MS/MS | Upregulation of hyaluronic acid, 4-hydroxynonenal, 2,3-diaminopropanoate, (5-L-glutamyl)-L-amino acid, D-ribulose 1,5-bisphosphate, 3-hydroxy-5-phosphonooxypentane-2,4-dione, and L-capreomycidine Downregulation of citrate, EDTA, inosine 5′-tetraphosphate, D-octopine N-acetyl-D-glucosamine (GlcNAc), D-glucuronic acid (GlcUA), L-arginine, and 1-hydroxy-2-methyl-2-butenyl 4-diphosphate | [44] | ||
Ototoxicity | Guinea pig | Serum | LC-MS | Upregulation of N acetylneuraminic acid, L-acetyl carnitine, ceramides, and cysteinyl serine | [50] |
Rat | Plasma | LC/MS | Upregulation of 3 acylcarnitine and a phosphatidylethanolamine with C18:2–C18:2 | [47] | |
GC/MS | Upregulation of cysteine–cystine and 3-hydroxy-butyrate | [47] | |||
Noise-induced hearing loss (NIHL) | Guinea pig | Inner ear fluid | GC/MS | Upregulation of 3-hydroxy-butyrate, glycerol, fumaric acid, galactosamine, pyruvat + oxalacetic acid, phosphate, meso-erythritol, citric acid, isocitric acid, mannose, and inositol | [58] |
Perilymphatic fluid | HILIC-UHPLC-Q-TOF–MS | Upregulation of pantothenic acid, creatine, butyryl carnitine, acetylcarnitine, two unidentified acylcarnitine, U137, and U569 | [59] | ||
Mouse | Cochlea and vestibular organ tissue | LC-MS/MS | Upregulation of pyridoxal 5-phosphate, inosine 5-monophosphate, inosine-5 phosphate, uridine-monophosphate, cytidine monophosphate, sucrose, L-aspartate, xanthosine 5-monophosphate, guanosine 5-monophosphate, adenosine 5-monophosphate, O-acetyl-l-carnitine, D-fructose 6-phosphate, oxidised glutathione, N-methyl-l-glutamate, NAD, aminoadipate, adenosine 3,5-diphosphate, adenosine 5-diphosphate, cytidine 5-diphosphocholine, flavin adenine dinucleotide, L-glutamic acid, succinate, N-acetyl-l-aspartic acid, cytosine, and adenosine Downregulation of uracil, L-leucine, L-phenylalanine, L-ornithine, D-ornithine, D-glucuronic acid, citrulline, L-tryptophan, L-arginine, xanthurenic acid, L-methionine, DL-isocitric acid, citrate, and adenosine-diphosphoglucose | [60] | |
Cochlear tissue | GC/MS | Upregulation of spermidine, 3- hydroxybutyric acid, and orotic acid | [61] | ||
Sheep | Perilymphatic fluid | LC/MS | Upregulation of urocanate, Oleate, 5-oxo-L-proline, N-acetyl-glucose, N-acetylneuraminate, L-tyrosine, trigonelline, leukotriene-B4, 5,6-dihydrouracil, and 3-ureidopropionate Downregulation of deoxycarnitine, L-carnitine, N-acetyl-L-leucine, S-(5′-Adenosyl)-L-homocysteine, and epinephrine. | [62] | |
Human | Plasma | HPLC-MS/MS | Upregulation of 7 alpha-hydroxy dehydroepiandrosterone Downregulation of pro-Trp, adenine, dimethylglycine, calciferol, cis-5-dodecenoic acid, and 3 beta, 7 alpha-dihydroxy-5-cholestenoic acid | [63] | |
UPLC/Q-TOF-MS | Upregulation of homodeoxycholic acid, quinolacetic acid, and 3,4-dihydroxy mandelic acid Downregulation of phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol | [64] | |||
Rat | Serum | UPLC/Q-TOF-MS | Upregulation of 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine, 3-hydroxybutyric acid, Pi 38:4 and Pe 38:4 Downregulation of indolelactic acid, hippuric acid, 2,6-dihydroxybenzoic acid, 7-keto-3-alpha, 12-alpha-dihydroxycholanic acid, acetaminophen sulfate, isatin, and quillaic acid | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khorrami, M.; Pastras, C.; Haynes, P.A.; Mirzaei, M.; Asadnia, M. The Current State of Proteomics and Metabolomics for Inner Ear Health and Disease. Proteomes 2024, 12, 17. https://doi.org/10.3390/proteomes12020017
Khorrami M, Pastras C, Haynes PA, Mirzaei M, Asadnia M. The Current State of Proteomics and Metabolomics for Inner Ear Health and Disease. Proteomes. 2024; 12(2):17. https://doi.org/10.3390/proteomes12020017
Chicago/Turabian StyleKhorrami, Motahare, Christopher Pastras, Paul A. Haynes, Mehdi Mirzaei, and Mohsen Asadnia. 2024. "The Current State of Proteomics and Metabolomics for Inner Ear Health and Disease" Proteomes 12, no. 2: 17. https://doi.org/10.3390/proteomes12020017
APA StyleKhorrami, M., Pastras, C., Haynes, P. A., Mirzaei, M., & Asadnia, M. (2024). The Current State of Proteomics and Metabolomics for Inner Ear Health and Disease. Proteomes, 12(2), 17. https://doi.org/10.3390/proteomes12020017