Quantitative Analysis of Complement Membrane Attack Complex Proteins Associated with Extracellular Vesicles
Abstract
:1. Introduction
2. Methods and Materials
2.1. Isolation of Plasma EVs
2.2. Dynamic Light Scattering
2.3. 15N-Labeled Internal Standards for Quantitative Proteomic Analysis
2.4. Sample Processing and MRM Assay
3. Results and Discussion
3.1. 20K-SEC-Hep and 106K-SEC-Hep EVs
3.2. MAC Proteins in the EV Preparations
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanz-Ros, J.; Mas-Bargues, C.; Romero-Garcia, N.; Huete-Acevedo, J.; Dromant, M.; Borras, C. Extracellular vesicles as therapeutic resources in the clinical environment. Int. J. Mol. Sci. 2023, 24, 2344. [Google Scholar] [CrossRef] [PubMed]
- Biagiotti, S.; Abbas, F.; Montanari, M.; Barattini, C.; Rossi, L.; Magnani, M.; Paja, S.; Cannonico, B. Extracellular vesicles as new players in drug delivery: A focus on red blood cells-derived EVs. Pharmaceutics 2023, 15, 365. [Google Scholar] [CrossRef] [PubMed]
- Draguet, F.; Bouland, C.; Dubois, N.; Bron, D.; Meuleman, N.; Stamatopoulos, B.; Lagneaux, L. Potential of mesenchymal stromal cell-derived extracellular vesicles as natural nanocar-riers: Concise review. Pharmaceutics 2023, 15, 558. [Google Scholar] [CrossRef] [PubMed]
- Ducrot, C.; Loiseau, S.; Wong, C.; Madec, E.; Volatron, J.; Piffoux, M. Hybrid extracellular vesicles for drug delivery. Cancer Lett. 2023, 558, 216107. [Google Scholar] [CrossRef] [PubMed]
- de Almeida Fuzeta, M.; Goncalves, P.P.; Fernandes-Platzgummer, A.; Cabral, J.M.S.; Ber-nandes, N.; da Silva, C.L. From promise to reality: Bioengineering strategies to enhance the therapeutic potential of extracellular vesicles. Bioengineering 2022, 9, 675. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Jeppesen, D.K.; Higginbotham, J.N.; Franklin, J.L.; Coffey, R.J. Comprehensive isolation of extracellular vesicles and nanoparticles. Nat. Protoc. 2023, 18, 1462–1487. [Google Scholar] [CrossRef] [PubMed]
- Stam, J.; Bartel, S.; Bischoff, R.; Wolters, J.C. Isolation of extracellular vesicles with combined enrichment methods. J. Chromatogr. B 2021, 1169, 122604. [Google Scholar] [CrossRef] [PubMed]
- Biro, E.; Nieuwland, R.; Tak, P.P.; Pronk, L.M.; Schaap, M.C.L.; Sturk, A.; Hack, C.E. Activated complement components and complement activator molecules on the surface of cell-derived microparticles in patients with rheumatoid arthritis and healthy individuals. Ann. Rheum. Dis. 2007, 66, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Karasu, E.; Eisenhardt, S.U.; Harant, J.; Huber-Lang, M. Extracellular vesicles: Packages sent with complement. Front. Immunol. 2018, 9, 721. [Google Scholar] [CrossRef]
- Xie, C.P.; Jane-Wit, D.; Pober, J.S. Complement membrane attack complex. New roles, mechanisms of action, and therapeutic targets. Am. J. Pathol. 2020, 190, 1138–1150. [Google Scholar] [CrossRef]
- Serna, M.; Giles, J.L.; Morgan, B.P.; Bubeck, D. Structural basis of complement membrane attack complex formation. Nat. Commun. 2016, 7, 10587. [Google Scholar] [CrossRef] [PubMed]
- Menny, A.; Serna, M.; Boyd, C.M.; Gardner, S.; Joseph, A.P.; Morgan, B.P.; Topf, M.; Brooks, N.J.; Bubeck, D. CryoEM reveals how the complement membrane attack complex requires lipid bilayers. Nat. Commun. 2018, 9, 5316. [Google Scholar] [CrossRef] [PubMed]
- Morgan, B.P.; Dankert, J.R.; Esser, A.F. Recovery of human neutrophils from complement attack: Removal of the membrane attack complex by endocytosis and exocytosis. J. Immunol. 1987, 138, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Pilzer, D.; Fishelson, Z. Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis. Int. Immunol. 2005, 17, 1239–1248. [Google Scholar] [CrossRef] [PubMed]
- Pilzer, D.; Gasser, O.; Moskovich, O.; Schifferli, J.A.; Fishelson, Z. Emmision of membrane vesicles: Roles in complement resistance, immunity and cancer. Semin. Immun. 2005, 27, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Goetzl, E.J.; Schwartz, J.B.; Abner, E.I.; Jicha, G.A.; Kapogiannis, D. High complement levels in astrocyte-derived exosomes of Alzheimer disease. Ann. Neurol. 2018, 83, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Noguerras-Ortiz, C.J.; Mahairaki, V.; Delgado-Perazza, F.; Das, D.; Avgerinos, K.; Eren, E.; Hentschel, M.; Goetzl, E.J.; Mattson, M.P.; Kapogiannis, D. Astrocyte- and neuron-derived extracellular vesicles from Alzheimer’s disease patients effect complement-mediated neurotoxicity. Cells 2020, 9, 1618. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, P.; Nogueras-Ortiz, C.; Kim, S.; Delgado-Peraza, F.; Calabresi, P.A.; Kapogiannis, D. Synaptic and complement markers in extracellular vesicles in multiple sclerosis. Mult. Scler. 2021, 27, 509–518. [Google Scholar] [CrossRef]
- Kolka, C.M.; Webster, J.; Lepietier, A.; Winterford, C.; Brown, I.; Richards, R.S.; Zelek, W.M.; Cao, Y.; Khamis, R.; Shanmugasundaram, K.B.; et al. C5b-9 membrane attack com-plex formation and extracellular vesicle shedding in Barrett’s esophagus and esophage-al adenocarcinoma. Front. Immunol. 2022, 13, 842023. [Google Scholar] [CrossRef]
- Anderson, L.; Hunter, C.L. Quantitative mass spectrometry multiple reaction monitoring assays for major plasma proteins. Mol. Cell Proteom. 2006, 5, 573–588. [Google Scholar] [CrossRef]
- Liebler, D.C.; Zimmerman, L.J. Targeted quantification of proteins by mass spectrometry. Biochemistry 2013, 52, 3797–3806. [Google Scholar] [CrossRef] [PubMed]
- Picotti, P.; Aebersold, R. Selected reaction monitoring-based proteomics: Workflows, potential, pitfalls and future directions. Nat. Methods 2012, 9, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Beynon, R.J.; Doherty, M.K.; Pratt, J.M.; Gaskell, S.J. Multiplexed absolute quantification in proteomics using QCAT proteins of concatenated signature peptides. Nat. Methods 2005, 2, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Carroll, K.M.; Lanucara, F.; Eyers, C.E. Quantification of proteins and their modifications using QconCAT technology. Methods Enzymol. 2011, 500, 113–131. [Google Scholar] [PubMed]
- Nguyen, A.; Turko, I.V. Isolation protocols and mitochondrial content for plasma extra-cellular vesicles. Anal. Bioanal. Chem. 2023, 415, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Anderson, K.W.; Turko, I.V. Assessment of extracellular vesicles purity using proteomic standards. Anal. Chem. 2017, 89, 11070–11075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Parot, J.; Hackley, V.A.; Turko, I.V. Quantitative proteomic analysis of biogene-sis-based classification for extracellular vesicles. Proteomes 2020, 8, 33. [Google Scholar] [CrossRef]
- Cheung, C.S.F.; Anderson, K.W.; Wang, M.; Turko, I.V. Natural flanking sequences for peptides included in a quantification concatamer internal standard. Anal. Chem. 2015, 87, 1097–1102. [Google Scholar] [CrossRef]
20K | 20K-SEC | 20K-SEC-Hep | 106K | 106K-SEC | 106K-SEC-Hep | |
---|---|---|---|---|---|---|
C3/C3b *, pmol/mg total protein | 14.8 ± 1.8 | 0.78 ± 0.12 | 0.087 ± 0.016 | 6.8 ± 0.8 | 0.59 ± 0.09 | 0.068 ± 0.015 |
Relative EV purity **, fold increase | 7 | 132 | 1184 | 15 | 175 | 1515 |
Proteins | 20K-SEC-Hep | 106K-SEC-Hep |
---|---|---|
Complement | ||
C3/C3b | 0.09 ± 0.02 | 0.07 ± 0.02 |
C5/C5b | 1.4 ± 0.20 | 0.09 ± 0.02 |
C6 | 1.1 ± 0.18 | 0.07 ± 0.02 |
C7 | 0.8 ± 0.16 | ND |
C8/C8a | 0.9 ± 0.16 | ND |
C8/C8b | 0.8 ± 0.12 | ND |
C9 | 1.2 ± 0.18 | 0.09 ± 0.02 |
EVs generic | ||
TSG101 | 2.7 ± 0.8 | 1.0 ± 0.3 |
flotillin-1 | 3.7 ± 1.1 | 0.8 ± 0.3 |
EHD4 | 6.1 ± 1.5 | 11.6 ± 3.1 |
moesin | 157 ± 29 | 13.3 ± 3.2 |
integrin beta-1 | 6.4 ± 1.8 | 1.0 ± 0.3 |
EVs plasma membrane-specific | ||
integrin alpha-IIb | 132 ± 35 | 5.4 ± 1.3 |
integrin beta-3 | 127 ± 38 | 5.1 ± 1.3 |
platelet glycoprotein Ib alpha | 19.1 ± 5.0 | ND |
platelet glycoprotein Ib beta | 17.2 ± 4.1 | ND |
platelet glycoprotein V | 17.7 ± 5.5 | ND |
platelet glycoprotein IX | 18.2 ± 5.3 | ND |
EVs endosomal membrane-specific | ||
integrin alpha-2 | 10.8 ± 3.3 | 19.3 ± 6.0 |
cytochrome P-450 5A1 | ND | 1.1 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turko, I.V. Quantitative Analysis of Complement Membrane Attack Complex Proteins Associated with Extracellular Vesicles. Proteomes 2024, 12, 21. https://doi.org/10.3390/proteomes12030021
Turko IV. Quantitative Analysis of Complement Membrane Attack Complex Proteins Associated with Extracellular Vesicles. Proteomes. 2024; 12(3):21. https://doi.org/10.3390/proteomes12030021
Chicago/Turabian StyleTurko, Illarion V. 2024. "Quantitative Analysis of Complement Membrane Attack Complex Proteins Associated with Extracellular Vesicles" Proteomes 12, no. 3: 21. https://doi.org/10.3390/proteomes12030021
APA StyleTurko, I. V. (2024). Quantitative Analysis of Complement Membrane Attack Complex Proteins Associated with Extracellular Vesicles. Proteomes, 12(3), 21. https://doi.org/10.3390/proteomes12030021