Differential Signaling Pathways Identified in Aqueous Humor, Anterior Capsule, and Crystalline Lens of Age-Related, Diabetic, and Post-Vitrectomy Cataract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Subjects
2.2. Sample Types
2.3. Sample Collection
2.4. Sample Preparation
2.5. Data Processing Protocol
2.6. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Protein Atlas
3.3. Gene Enrichment Analysis
3.3.1. Aqueous Humor Samples
3.3.2. Anterior Capsule Samples
3.3.3. Phaco Cassette Content Samples
3.4. Demographic Data
4. Discussion
4.1. WNT Pathway
4.2. Glycosaminoglycans
4.3. Glycosphingolipids
4.4. Crystallins
4.5. Lens Cytoskeleton
4.6. TGF-β/SMAD Pathway
4.7. Spliceosome
4.8. Ribosome
4.9. Proteasome
4.10. Oxidative Stress
4.11. Complement Pathway
4.12. Therapeutic Implications
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zetterberg, M.; Celojevic, D. Gender and Cataract—The Role of Estrogen. Curr. Eye Res. 2015, 40, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Resnikoff, S.; Pascolini, D.; Etya’ale, D.; Kocur, I.; Pararajasegaram, R.; Pokharel, G.P.; Mariotti, S.P. Global Data on Visual Impairment in the Year 2002. Bull. World Health Organ. 2004, 82, 844–851. [Google Scholar] [PubMed]
- Pascolini, D.; Mariotti, S.P. Global Estimates of Visual Impairment: 2010. Br. J. Ophthalmol. 2012, 96, 614–618. [Google Scholar] [CrossRef]
- Sperduto, R.D.; Milton, R.C.; Lindblad, A.S.; Klein, B.E.K.; Ferris, F.L.; Clemons, T.E. Risk Factors Associated with Age-Related Nuclear and Cortical Cataract: A Case-Control Study in the Age-Related Eye Disease Study, AREDS Report No. 5. Ophthalmology 2001, 108, 1400–1408. [Google Scholar] [CrossRef]
- Karakosta, C.; Samiotaki, M.; Panayotou, G.; Papaconstantinou, D.; Moschos, M.M. Proteomic Changes of Glycolipid Pathways in Age-Related, Diabetic, and Post-Vitrectomy Cataracts. J. Clin. Med. 2024, 13, 7287. [Google Scholar] [CrossRef]
- Chylack, L.T.; Wolfe, J.K.; Singer, D.M.; Leske, M.C.; Bullimore, M.A.; Bailey, I.L.; Friend, J.; McCarthy, D.; Wu, S.Y. The Lens Opacities Classification System III. Arch. Ophthalmol. 1993, 111, 831–836. [Google Scholar] [CrossRef]
- Brown, N.A.P. The Morphology of Cataract and Visual Performance. Eye 1993, 7 Pt 1, 63–67. [Google Scholar] [CrossRef]
- Schey, K.L.; Wang, Z.; Friedrich, M.G.; Garland, D.L.; Truscott, R.J.W. Spatiotemporal Changes in the Human Lens Proteome: Critical Insights into Long-Lived Proteins. Prog. Retin. Eye Res. 2020, 76, 100802. [Google Scholar] [CrossRef]
- Wang, L.; Liu, W.; Huang, X. An Approach to Revolutionize Cataract Treatment by Enhancing Drug Probing through Intraocular Cell Line. Libyan J. Med. 2018, 13. [Google Scholar] [CrossRef]
- Cantrell, L.S.; Gletten, R.B.; Schey, K.L. Proteome Remodeling of the Eye Lens at 50 Years Identified with Data-Independent Acquisition. Mol. Cell Proteom. 2023, 22, 100453. [Google Scholar] [CrossRef]
- Pietrowska, K.; Dmuchowska, D.A.; Krasnicki, P.; Mariak, Z.; Kretowski, A.; Ciborowski, M. Analysis of Pharmaceuticals and Small Molecules in Aqueous Humor. J. Pharm. Biomed. Anal. 2018, 159, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Dmuchowska, D.A.; Pietrowska, K.; Krasnicki, P.; Kowalczyk, T.; Misiura, M.; Grochowski, E.T.; Mariak, Z.; Kretowski, A.; Ciborowski, M. Metabolomics Reveals Differences in Aqueous Humor Composition in Patients with and Without Pseudoexfoliation Syndrome. Front. Mol. Biosci. 2021, 8, 682600. [Google Scholar] [CrossRef] [PubMed]
- Metascape. Available online: https://metascape.org/gp/index.html#/main/step1 (accessed on 7 April 2023).
- Oliveros, J.C. Venny 2.1.0. Available online: https://bioinfogp.cnb.csic.es/tools/venny/ (accessed on 30 March 2023).
- The Human Proteome in Eye—The Human Protein Atlas. Available online: https://www.proteinatlas.org/humanproteome/tissue/eye (accessed on 30 March 2023).
- Rao, P.V.; Maddala, R. The Role of the Lens Actin Cytoskeleton in Fiber Cell Elongation and Differentiation. Semin. Cell Dev. Biol. 2006, 17, 698. [Google Scholar] [CrossRef]
- Sonal; Ganzinger, K.A.; Vogel, S.K.; Mücksch, J.; Blumhardt, P.; Schwille, P. Myosin-II Activity Generates a Dynamic Steady State with Continuous Actin Turnover in a Minimal Actin Cortex. J. Cell Sci. 2018, 132, jcs219899. [Google Scholar] [CrossRef]
- Cooper, G.M. Actin, Myosin, and Cell Movement. 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK9961/ (accessed on 30 March 2023).
- Chen, Y.; Stump, R.J.W.; Lovicu, F.J.; Shimono, A.; McAvoy, J.W. Wnt Signaling Is Required for Organization of the Lens Fiber Cell Cytoskeleton and Development of Lens Three-Dimensional Architecture. Dev. Biol. 2008, 324, 161. [Google Scholar] [CrossRef]
- Chen, Y.; Stump, R.J.W.; Lovicu, F.J.; McAvoy, J.W. A Role for Wnt/Planar Cell Polarity Signaling during Lens Fiber Cell Differentiation? Semin. Cell Dev. Biol. 2006, 17, 712. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduct. Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef]
- Sethi, J.K.; Vidal-Puig, A. Wnt Signalling and the Control of Cellular Metabolism. Biochem. J. 2010, 427, 1. [Google Scholar] [CrossRef]
- MacDonald, B.T.; Tamai, K.; He, X. Wnt/β-Catenin Signaling: Components, Mechanisms, and Diseases. Dev. Cell 2009, 17, 9. [Google Scholar] [CrossRef]
- MacDonald, B.T.; He, X. Frizzled and LRP5/6 Receptors for Wnt/β-Catenin Signaling. Cold Spring Harb. Perspect. Biol. 2012, 4, 7880–7881. [Google Scholar] [CrossRef]
- Ackers, I.; Malgor, R. Interrelationship of Canonical and Non-Canonical Wnt Signalling Pathways in Chronic Metabolic Diseases. Diab. Vasc. Dis. Res. 2018, 15, 3. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.B.; Chen, X.D.; Zhou, X.Y.; Zhu, Q. The Wnt Antagonist and Secreted Frizzled-Related Protein 5: Implications on Lipid Metabolism, Inflammation, and Type 2 Diabetes Mellitus. Biosci. Rep. 2018, 38, 20180011. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Joo, C.K. Wnt Signaling Enhances FGF2-Triggered Lens Fiber Cell Differentiation. Development 2004, 131, 1813–1824. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.J.K.; Yun, J.; Elstrott, J.; Jasper, H. Non-Canonical Wnt Signaling Promotes Directed Migration of Intestinal Stem Cells to Sites of Injury. Nat. Commun. 2021, 12, 7150. [Google Scholar] [CrossRef]
- Chong, C.C.W.; Ang, S.L.; Stump, R.J.W.; Lovicu, F.J.; McAvoy, J.W. Wnt Expression in TGFß–Induced Cataract Models. Investig. Ophthalmol. Vis. Sci. 2004, 45, 2654. [Google Scholar]
- Wang, P.; Li, Y.W.; Lu, X.; Liu, Y.; Tian, X.L.; Gao, L.; Liu, Q.J.; Fan, L.; Tian, M. Low-Dose Ionizing Radiation: Effects on the Proliferation and Migration of Lens Epithelial Cells via Activation of the Wnt/β-Catenin Pathway. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2023, 888, 503637. [Google Scholar] [CrossRef]
- Wen, X.; Wu, Y.; Awadasseid, A.; Tanaka, Y.; Zhang, W. New Advances in Canonical Wnt/β-Catenin Signaling in Cancer. Cancer Manag. Res. 2020, 12, 6987. [Google Scholar] [CrossRef]
- Pomin, V.H.; Mulloy, B. Glycosaminoglycans and Proteoglycans. Pharmaceuticals 2018, 11, 27. [Google Scholar] [CrossRef]
- Merry, C.L.R.; Lindahl, U.; Couchman, J.; Esko, J.D. Proteoglycans and Sulfated Glycosaminoglycans. Essent. Glycobiol. 2022. [Google Scholar] [CrossRef]
- Sarrazin, S.; Lamanna, W.C.; Esko, J.D. Heparan Sulfate Proteoglycans. Cold Spring Harb. Perspect. Biol. 2011, 3, a004952. [Google Scholar] [CrossRef]
- Annaval, T.; Wild, R.; Crétinon, Y.; Sadir, R.; Vivès, R.R.; Lortat-Jacob, H. Heparan Sulfate Proteoglycans Biosynthesis and Post Synthesis Mechanisms Combine Few Enzymes and Few Core Proteins to Generate Extensive Structural and Functional Diversity. Molecules 2020, 25, 4215. [Google Scholar] [CrossRef] [PubMed]
- Wishart, T.F.L.; Lovicu, F.J. An Atlas of Heparan Sulfate Proteoglycans in the Postnatal Rat Lens. Investig. Ophthalmol. Vis. Sci. 2021, 62, 5. [Google Scholar] [CrossRef]
- Wishart, T.F.L.; Lovicu, F.J. Heparan Sulfate Proteoglycans (HSPGs) of the Ocular Lens. Prog. Retin. Eye Res. 2023, 93, 101118. [Google Scholar] [CrossRef]
- Kubo, E.; Shibata, S.; Shibata, T.; Sasaki, H.; Singh, D.P. Role of Decorin in the Lens and Ocular Diseases. Cells 2023, 12, 74. [Google Scholar] [CrossRef]
- Stith, J.L.; Velazquez, F.N.; Obeid, L.M. Advances in Determining Signaling Mechanisms of Ceramide and Role in Disease. J. Lipid Res. 2019, 60, 913. [Google Scholar] [CrossRef]
- Hannun, Y.A.; Obeid, L.M. Sphingolipids and Their Metabolism in Physiology and Disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 175–191. [Google Scholar] [CrossRef]
- Woodcock, J. Sphingosine and Ceramide Signalling in Apoptosis. IUBMB Life 2006, 58, 462–466. [Google Scholar] [CrossRef]
- Young, M.M.; Wang, H.G. Sphingolipids as Regulators of Autophagy and Endocytic Trafficking. Adv. Cancer Res. 2018, 140, 27–60. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Li, W.; Zhou, F.; Li, J. Changes in the Lipid Profile of Aqueous Humor From Diabetic Cataract Patients. Transl. Vis. Sci. Technol. 2022, 11, 5. [Google Scholar] [CrossRef]
- Ogiso, M.; Komoto, M.; Okinaga, T.; Koyota, S.; Hoshi, M. Age-Related Changes in Ganglioside Composition in Human Lens. Exp. Eye Res. 1995, 60, 317–323. [Google Scholar] [CrossRef]
- Cavdarli, S.; Groux-Degroote, S.; Delannoy, P. Gangliosides: The Double-Edge Sword of Neuro-Ectodermal Derived Tumors. Biomolecules 2019, 9, 311. [Google Scholar] [CrossRef] [PubMed]
- Truscott, R.J.W.; Friedrich, M.G. Molecular Processes Implicated in Human Age-Related Nuclear Cataract. Investig. Ophthalmol. Vis. Sci. 2019, 60, 5007. [Google Scholar] [CrossRef] [PubMed]
- Varadaraj, K.; Kumari, S.S.; Patil, R.; Wax, M.B.; Mathias, R.T. Functional Characterization of a Human Aquaporin 0 Mutation That Leads to a Congenital Dominant Lens Cataract. Exp. Eye Res. 2008, 87, 9. [Google Scholar] [CrossRef]
- Schey, K.L.; Wang, Z.; Wenke, J.L.; Qi, Y. Aquaporins in the Eye: Expression, Function, and Roles in Ocular Disease. Biochim. Biophys. Acta 2014, 1840, 1513. [Google Scholar] [CrossRef]
- Schey, K.L.; Gletten, R.B.; O’Neale, C.V.T.; Wang, Z.; Petrova, R.S.; Donaldson, P.J. Lens Aquaporins in Health and Disease: Location Is Everything! Front. Physiol. 2022, 13, 882550. [Google Scholar] [CrossRef]
- Lo, W.K.; Wen, X.J.; Zhou, C.J. Microtubule Configuration and Membranous Vesicle Transport in Elongating Fiber Cells of the Rat Lens. Exp. Eye Res. 2003, 77, 615–626. [Google Scholar] [CrossRef]
- Logan, C.M.; Menko, A.S. Microtubules: Evolving Roles and Critical Cellular Interactions. Exp. Biol. Med. 2019, 244, 1240–1254. [Google Scholar] [CrossRef]
- Clark, J.I.; Matsushima, H.; David, L.L.; Clark, J.M. Lens Cytoskeleton and Transparency: A Model. Eye 1999, 13 Pt 3b, 417–424. [Google Scholar] [CrossRef]
- Oka, M.; Kudo, H.; Sugama, N.; Asami, Y.; Takehana, M. The Function of Filensin and Phakinin in Lens Transparency. Mol. Vis. 2008, 14, 815. [Google Scholar]
- Song, S.; Landsbury, A.; Dahm, R.; Liu, Y.; Zhang, Q.; Quinlan, R.A. Functions of the Intermediate Filament Cytoskeleton in the Eye Lens. J. Clin. Investig. 2009, 119, 1837. [Google Scholar] [CrossRef]
- Kahata, K.; Dadras, M.S.; Moustakas, A. TGF-β Family Signaling in Epithelial Differentiation and Epithelial–Mesenchymal Transition. Cold Spring Harb. Perspect. Biol. 2018, 10, a022194. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Yang, T.; Liu, X.; Fan, F.; Zhou, X.; Li, H.; Luo, Y. TGF-β/Smad Signalling Activation by HTRA1 Regulates the Function of Human Lens Epithelial Cells and Its Mechanism in Posterior Subcapsular Congenital Cataract. Int. J. Mol. Sci. 2022, 23, 14431. [Google Scholar] [CrossRef] [PubMed]
- Lamond, A.I. The Spliceosome. Bioessays 1993, 15, 595–603. [Google Scholar] [CrossRef]
- Chograni, M.; Alahdal, H.M.; Rejili, M. Autosomal Recessive Congenital Cataract Is Associated with a Novel 4-Bp Splicing Deletion Mutation in a Novel C10orf71 Human Gene. Hum. Genom. 2023, 17, 41. [Google Scholar] [CrossRef]
- Haloui, Z.; Pujol, J.P.; Galera, P.; Courtois, Y.; Laurent, M. Analysis of Lens Protein Synthesis in a Cataractous Mutant Mouse: The Cat Fraser. Exp. Eye Res. 1990, 51, 487–494. [Google Scholar] [CrossRef]
- Andley, U.P.; Walsh, A.; Kochevar, I.E.; Reddan, J.R. Effect of Ultraviolet-B Radiation on Protein Synthesis in Cultured Lens Epithelial Cells. Curr. Eye Res. 1990, 9, 1099–1106. [Google Scholar] [CrossRef]
- Ishida, H.; Shibata, T.; Nakamura, Y.; Ishigaki, Y.; Singh, D.P.; Sasaki, H.; Kubo, E. Identification of Differential Gene Expression Pattern in Lens Epithelial Cells Derived from Cataractous and Noncataractous Lenses of Shumiya Cataract Rat. Biomed. Res. Int. 2020, 2020, 7319590. [Google Scholar] [CrossRef]
- Tanaka, K. The Proteasome: Overview of Structure and Functions. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2009, 85, 12. [Google Scholar] [CrossRef]
- Zetterberg, M.; Petersen, A.; Sjöstrand, J.; Karlsson, J.O. Proteasome Activity in Human Lens Nuclei and Correlation with Age, Gender and Severity of Cataract. Curr. Eye Res. 2003, 27, 45–53. [Google Scholar] [CrossRef]
- Sarsour, E.H.; Kumar, M.G.; Chaudhuri, L.; Kalen, A.L.; Goswami, P.C. Redox Control of the Cell Cycle in Health and Disease. Antioxid. Redox Signal 2009, 11, 2985. [Google Scholar] [CrossRef]
- Nita, M.; Grzybowski, A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid. Med. Cell Longev. 2016, 2016, 3164734. [Google Scholar] [CrossRef] [PubMed]
- Holekamp, N.M.; Shui, Y.B.; Beebe, D.C. Vitrectomy Surgery Increases Oxygen Exposure to the Lens: A Possible Mechanism for Nuclear Cataract Formation. Am. J. Ophthalmol. 2005, 139, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Ricklin, D.; Reis, E.S.; Lambris, J.D. Complement in Disease: A Defence System Turning Offensive. Nat. Rev. Nephrol. 2016, 12, 383. [Google Scholar] [CrossRef]
- Sheehan, M.; Morris, C.A.; Pussell, B.A.; Charlesworth, J.A. Complement Inhibition by Human Vitronectin Involves Non-Heparin Binding Domains. Clin. Exp. Immunol. 1995, 101, 136–141. [Google Scholar] [CrossRef]
- Ji, Y.; Rong, X.; Lu, Y. Metabolic Characterization of Human Aqueous Humor in the Cataract Progression after Pars Plana Vitrectomy. BMC Ophthalmol. 2018, 18, 63. [Google Scholar] [CrossRef]
- Markatia, Z.; Hudson, J.; Leung, E.H.; Sajjad, A.; Gibbons, A. The Post Vitrectomy Cataract. Int. Ophthalmol. Clin. 2022, 62, 79. [Google Scholar] [CrossRef]
- Gu, R.; Zhou, M.; Jiang, C.; Yu, J.; Xu, G. Elevated Concentration of Cytokines in Aqueous in Post-Vitrectomy Eyes. Clin. Exp. Ophthalmol. 2016, 44, 128–134. [Google Scholar] [CrossRef]
- Deutsch, E.W.; Bandeira, N.; Perez-Riverol, Y.; Sharma, V.; Carver, J.J.; Mendoza, L.; Kundu, D.J.; Wang, S.; Bandla, C.; Kamatchinathan, S.; et al. The ProteomeXchange Consortium at 10 Years: 2023 Update. Nucleic Acids Res. 2023, 51, D1539. [Google Scholar] [CrossRef]
Group 1 (DC) | Group 2 (ARC) | Group 3 (PVC) | |
---|---|---|---|
Subjects | 11 | 12 | 7 |
Mean age (years, mean ± SD) | 61.7 ± 4.3 | 79.6 ± 4.2 | 60 ± 10.2 |
Sex (male/female) | 7:4 | 5:7 | 2:5 |
OD:OS | 7:4 | 6:6 | 1:6 |
Dominant type of cataract (NS:CS:PSC) | 5:1:5 | 8:2:2 | 3:0:4 |
Mean height(cm, mean ± SD) | 171.45 ± 7.13 | 164.08 ± 9.98 | 168.88 ± 7.08 |
Mean weight(kg, mean ± SD) | 94.55 ± 6.82 | 70.58 ± 13.75 | 77.88 ± 13.35 |
Mean AL(mm, mean ± SD) | 23.10 ± 0.80 | 23.69 ± 0.97 | 24.52 ± 1.49 |
Mean K1(D, mean ± SD) | 43.02 ± 0.64 | 42.89 ± 1.44 | 41.51 ± 1.51 |
Mean K2(D, mean ± SD) | 44.17 ± 0.79 | 43.58 ± 1.55 | 42.65 ± 1.61 |
Mean sun exposure(hours, mean ± SD) | 3.5 ± 2.5 | 2.2 ± 1.5 | 4.3 ± 2.4 |
Use of sunglasses (Yes/No) | 7:4 | 6:6 | 3:4 |
Iris color(brown/hazel/blue) | 8:2:1 | 9:3:0 | 5:1:1 |
Smoking (Yes/No) | 4:7 | 3:9 | 0:7 |
Alcohol consumption (Yes/No) | 1:10 | 2:10 | 0:7 |
Hypertension (Yes/No) | 2:9 | 7:5 | 4:3 |
Glaucoma (Yes/No) | 0:11 | 1:11 | 0:7 |
Aspirin intake (Yes/No) | 1:10 | 1:11 | 0:7 |
AMD (Yes/No) | 0:11 | 4:8 | 0:7 |
Thyroid disease (Yes/No) | 2:9 | 3:9 | 0:7 |
Diet supplementary intake (Yes/No) | 3:8 | 5:7 | 1:6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakosta, C.; Samiotaki, M.; Bisoukis, A.; Bougioukas, K.I.; Panayotou, G.; Papaconstantinou, D.; Moschos, M.M. Differential Signaling Pathways Identified in Aqueous Humor, Anterior Capsule, and Crystalline Lens of Age-Related, Diabetic, and Post-Vitrectomy Cataract. Proteomes 2025, 13, 7. https://doi.org/10.3390/proteomes13010007
Karakosta C, Samiotaki M, Bisoukis A, Bougioukas KI, Panayotou G, Papaconstantinou D, Moschos MM. Differential Signaling Pathways Identified in Aqueous Humor, Anterior Capsule, and Crystalline Lens of Age-Related, Diabetic, and Post-Vitrectomy Cataract. Proteomes. 2025; 13(1):7. https://doi.org/10.3390/proteomes13010007
Chicago/Turabian StyleKarakosta, Christina, Martina Samiotaki, Anastasios Bisoukis, Konstantinos I. Bougioukas, George Panayotou, Dimitrios Papaconstantinou, and Marilita M. Moschos. 2025. "Differential Signaling Pathways Identified in Aqueous Humor, Anterior Capsule, and Crystalline Lens of Age-Related, Diabetic, and Post-Vitrectomy Cataract" Proteomes 13, no. 1: 7. https://doi.org/10.3390/proteomes13010007
APA StyleKarakosta, C., Samiotaki, M., Bisoukis, A., Bougioukas, K. I., Panayotou, G., Papaconstantinou, D., & Moschos, M. M. (2025). Differential Signaling Pathways Identified in Aqueous Humor, Anterior Capsule, and Crystalline Lens of Age-Related, Diabetic, and Post-Vitrectomy Cataract. Proteomes, 13(1), 7. https://doi.org/10.3390/proteomes13010007