Optimal Sizing of Stand-Alone Microgrids Based on Recent Metaheuristic Algorithms
Abstract
:1. Introduction
2. Methods
2.1. System Configurations
2.2. Complete Microgrid Mathematical Model
2.2.1. Solar System
2.2.2. Battery Storage Unit
2.2.3. Electrolyzer
2.2.4. Hydrogen Tank
2.2.5. Fuel Cell (FC)
2.2.6. DC/AC Converter
2.3. Energy Flow Scenarios
2.3.1. Case 1
- Scenario I:
- Scenario II:
- Scenario III:
2.3.2. Case 2
- Scenario IV:
- Scenario V:
- Scenario VI:
2.4. Sizing of Microgrid Problem Formalization
2.4.1. Optimized Objective Function Indices
- (1)
- Cost of Energy (COC)
- (a)
- The Annual Capital Cost of the Microgrid System
- (b)
- The Operation and Maintenance Cost
- (c)
- The Annual Replacement Cost
- (2)
- Loss of Power Supply Probability (LPSP)
2.4.2. The Proposed Objective Function
2.4.3. Design of Constrains for Optimization
2.5. Optimization Algorithms
2.5.1. Bat Optimization (BAT)
- Based on the echolocation characteristics, the bat can detect their prey and recognize the variation between food and surrounding barriers.
- The flying bat is in a random form toward a place (xi) via velocity (vi) and frequency (Fmin), wide wavelength (λ), and loudness (Lo) for detecting the prey. It has the capability to control its pulses λ/Fmin based on pulse rate emission r via a range of 0–1 to approximate its goal.
- Based on [31], the loudness has been supposed to be ranged from maximum value (Lo) to a minimum value (Lmin).
2.5.2. Black-Hole-Based Optimization Technique (BHB)
2.5.3. Equilibrium Optimizer (EQ)
2.6. Case Study
3. Results and Discussions
3.1. The Optimal Configuration of Energy System
3.2. Performance of Different Algorithms
3.3. Statistical Results
3.4. Operation of the Microgrid
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Arab Republic of Egypt, Ministry of Electricity and Energy. Egyptian Electricity Holding Company_Annual Report 2015–2016. Available online: http://www.moee.gov.eg/english_new/report.aspx (accessed on 10 April 2021).
- Sultan, M.H.; Kuznetsov, O.N.; Diab, A.A.Z. Site selection of large-scale grid-connected solar PV system in Egypt. In 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus); IEEE: New York, NY, USA, 2018; pp. 813–818. [Google Scholar]
- Sultan, H.M.; Diab, A.A.Z.; Oleg, N.K.; Irina, S.Z. Design and evaluation of PV-wind hybrid system with hydroelectric pumped storage on the National Power System of Egypt. Glob. Energy Interconnect. 2018, 1, 301–311. [Google Scholar]
- The Official Website of the Ministry of Electricity and Energy. Available online: http://www.moee.gov.eg (accessed on 10 April 2021).
- Tolba, M.A.; Diab, A.A.Z.; Tulsky, V.N.; Abdelaziz, A.Y. LVCI approach for optimal allocation of distributed generations and capacitor banks in distribution grids based on moth–flame optimization algorithm. Electr. Eng. 2018, 100, 2059–2084. [Google Scholar] [CrossRef]
- Diab, A.A.Z.; Sultan, H.M.; Kuznetsov, O.N. Optimal sizing of hybrid solar/wind/hydroelectric pumped storage energy system in Egypt based on different meta-heuristic techniques. Environ. Sci. Pollut. Res. 2019, 27, 32318–32340. [Google Scholar] [CrossRef] [PubMed]
- Shouman, R.; El Shenawy, E.T.; Khattab, N.M. Market financial analysis and cost performance for photovoltaic technology through international and national perspective with case study for Egypt. Renew. Sustain. Energy Rev. 2016, 57, 540–549. [Google Scholar] [CrossRef]
- Kamel, O.M.; Abdelaziz, A.Y.; Zaki Diab, A.A. Damping Oscillation Techniques for Wind Farm DFIG Integrated into Inter-Connected Power System. Electr. Power Compon. Syst. 2020, 48, 1551–1570. [Google Scholar] [CrossRef]
- Ngan, M.S.; Tan, C.W. Assessment of economic viability for PV/wind/diesel hybrid energy system in Southern Peninsular Malaysia. Renew. Sustain. Energy Rev. 2012, 16, 634–647. [Google Scholar] [CrossRef]
- Diab, A.A.Z.; Sultan, H.M.; Mohamed, I.S.; Kuznetsov, O.N.; Do, T.D. Application of different optimization algorithms for optimal sizing of PV/wind/diesel/battery storage stand-alone hybrid microgrid. IEEE Access 2019, 7, 119223–119245. [Google Scholar] [CrossRef]
- Diab, A.A.Z.; El-ajmi, S.I.; Sultan, H.M.; Hassan, Y.B. Modified farmland fertility optimization algorithm for optimal design of a grid-connected hybrid renewable energy system with fuel cell storage: Case study of Ataka, Egypt. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 119–132. [Google Scholar] [CrossRef]
- Rezk, H.; Al-Dhaifallah, M.; Hassan, Y.B.; Ziedan, H.A. Optimization and Energy Management of Hybrid Photovoltaic-Diesel-Battery System to Pump and Desalinate Water at Isolated Regions. IEEE Access 2020, 8, 102512–102529. [Google Scholar] [CrossRef]
- Tran, Q.T.; Davies, K.; Sepasi, S. Isolation Microgrid Design for Remote Areas with the Integration of Renewable Energy: A Case Study of Con Dao Island in Vietnam. Clean Technol. 2021, 3, 804–820. [Google Scholar] [CrossRef]
- Xiang, Y.; Han, W.; Zhang, J.; Liu, J.; Liu, Y. Optimal sizing of energy storage system in active distribution networks using Fourier–Legendre series based state of energy function. IEEE Trans. Power Syst. 2017, 33, 2313–2315. [Google Scholar] [CrossRef]
- Lu, X.; Wang, H. Optimal sizing and energy management for cost-effective PEV hybrid energy storage systems. IEEE Trans. Ind. Inform. 2019, 16, 3407–3416. [Google Scholar] [CrossRef]
- Gonzalez, A.; Riba, J.R.; Rius, A.; Puig, R. Optimal sizing of a hybrid grid-connected photovoltaic and wind power system. Appl. Energy 2015, 154, 752–762. [Google Scholar] [CrossRef] [Green Version]
- Biswas, A.; Kumar, A. Techno-Economic Optimization of a Stand-alone PV/PHS/Battery systems for very low load situation. Int. J. Renew. Energy Res. 2017, 7, 844–856. [Google Scholar]
- Kaab, A.; Sharifi, M.; Mobli, H.; Nabavi-Pelesaraei, A.; Chau, K.W. Use of optimization techniques for energy use efficiency and environmental life cycle assessment modification in sugarcane production. Energy 2019, 181, 1298–1320. [Google Scholar] [CrossRef]
- Acevedo-Arenas, C.Y.; Correcher, A.; Sánchez-Díaz, C.; Ariza, E.; Alfonso-Solar, D.; Vargas-Salgado, C.; Petit-Suárez, J.F. MPC for optimal dispatch of an AC-linked hybrid PV/wind/biomass/H2 system incorporating demand response. Energy Convers. Manag. 2019, 186, 241–257. [Google Scholar] [CrossRef]
- Ciardiello, A.; Rosso, F.; Dell’Olmo, J.; Ciancio, V.; Ferrero, M.; Salata, F. Multi-objective approach to the optimization of shape and envelope in building energy design. Appl. Energy 2020, 280, 115984. [Google Scholar] [CrossRef]
- Gassar, A.A.; Koo, C.; Kim, T.W.; Cha, S.H. Performance Optimization Studies on Heating, Cooling and Lighting Energy Systems of Buildings during the Design Stage: A Review. Sustainability 2021, 13, 9815. [Google Scholar] [CrossRef]
- Chang, X.; Xu, Y.; Gu, W.; Sun, H.; Chow, M.-Y.; Yi, Z. Accelerated Distributed Hybrid Stochastic/Robust Energy Management of Smart Grids. IEEE Trans. Ind. Inform. 2021, 17, 5335–5347. [Google Scholar] [CrossRef]
- Chang, X.; Xu, Y.; Sun, H.; Khan, I. A distributed robust optimization approach for the economic dispatch of flexible resources. Int. J. Electr. Power Energy Syst. 2021, 124, 106360. [Google Scholar] [CrossRef]
- Ekren, O.; Ekren, B.Y. Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing. Appl. Energy 2010, 87, 592–598. [Google Scholar] [CrossRef]
- Garcia, R.S.; Weisser, D. A wind–diesel system with hydrogen storage: Joint optimization of design and dispatch. Renew. Energy 2006, 31, 2296–2320. [Google Scholar] [CrossRef]
- El-Sharkh, M.Y.; Tanrioven, M.; Rahman, A.; Alam, M.S. Cost related sensitivity analysis for optimal operation of a grid-parallel PEM fuel cell power plant. J. Power Sources 2006, 161, 1198–1207. [Google Scholar] [CrossRef]
- Kashefi, K.; Riahy, G.H.; Kouhsari, S.M. Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages. Renew. Energy 2009, 34, 2380–2390. [Google Scholar] [CrossRef]
- Khan, M.J.; Iqbal, M.T. Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland. Renew. Energy 2005, 30, 835–854. [Google Scholar] [CrossRef]
- Mohamed, M.; Eltamaly, A.; Alolah, A.; Hatata, Y.A. A novel framework-based cuckoo search algorithm for sizing and optimization of grid-independent hybrid renewable energy systems. Int. J. Green Energy 2018, 16, 86–100. [Google Scholar] [CrossRef]
- Ramli, M.A.M.; Bouchekara, H.R.E.H.; Alghamdi, A.S. Optimal sizing of PV/wind/diesel hybrid microgrid system using multiobjective self-adaptive differential evolution algorithm. Renew. Energy 2018, 121, 400–411. [Google Scholar] [CrossRef]
- Yang, X.-S. A new meta heuristic bat-Inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NISCO 2010); Gonzalez, J.R., Ed.; Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74. [Google Scholar]
- Bouchekara, H.R.E.H. Optimal design of electromagnetic devices using a black-Hole-Based optimization technique. IEEE Trans. Magn. 2013, 49, 5709–5714. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based Syst. 2020, 191, 2020. [Google Scholar] [CrossRef]
- Available online: Solargis.com (accessed on 15 April 2021).
Component | Capital Cost (USD/Unit) | Replacement Cost (USD/Unit) | O&M (USD/Unit–yr) | Lifetime (yr) | Efficiency (%) | Unit |
---|---|---|---|---|---|---|
PV array | 7000 | 6000 | 20 | 20 | 0.15 | 1 kW |
Electrolyzer | 2000 | 1500 | 25 | 20 | 75 | 1 kW |
Hydrogen tank | 1300 | 1200 | 15 | 20 | 95 | 1 kg |
Fuel cell | 3000 | 2500 | 175 | 5 | 50 | 1 kW |
Battery bank | 146.5 | 102.55 | - | 10 | 86 | 12 V (50 Ah) |
DC/AC converter | 800 | 750 | 8 | 15 | 90 | 1 kW |
Items | BAT | EQ | BHB | |
---|---|---|---|---|
Best objective function | 0.112231 | 0.1074 | 0.108078 | |
Best solution | PV (kw) | 339.6977 | 339.6308 | 348.8188 |
Battery | 4695.026 | 4909.019 | 4893.064 | |
Electrolyzer (kw) | 459.6776 | 452.9702 | 491.7788 | |
Tank (kg) | 88.80917 | 87.25968 | 107.2796 | |
FC (kw) | 34.73013 | 34.10566 | 35.4967 | |
COE | 0.289129 | 0.291437 | 0.302562 | |
NPV | 546067.9 | 550426 | 571437.7 | |
LPSP | 0.045548 | 0.043986 | 0.039623 | |
Dummy load | 0.113331 | 0.113607 | 0.118959 |
Items | BAT | EQ (Best Results) | BHB |
---|---|---|---|
cost_min | 0.112231 | 0.1074 | 0.108078 |
cost_maxworst | 0.13043 | 0.112216 | 0.124731 |
cost_mean | 0.117865 | 0.110812 | 0.114019 |
cost_median | 0.117716 | 0.112215 | 0.113443 |
cost_sD | 0.469301 | 0.223387 | 0.41938 |
RE | 1.506026 | 0.762435 | 1.649028 |
MAE | 0.005634 | 0.003412 | 0.005941 |
RMSE | 0.007282 | 0.004053 | 0.007231 |
eff | 95.36117 | 96.95946 | 94.91016 |
p | 1.73 × 10−6 | 1.82 × 10−5 | 1.73 × 10−6 |
h | 1 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diab, A.A.Z.; El-Rifaie, A.M.; Zaky, M.M.; Tolba, M.A. Optimal Sizing of Stand-Alone Microgrids Based on Recent Metaheuristic Algorithms. Mathematics 2022, 10, 140. https://doi.org/10.3390/math10010140
Diab AAZ, El-Rifaie AM, Zaky MM, Tolba MA. Optimal Sizing of Stand-Alone Microgrids Based on Recent Metaheuristic Algorithms. Mathematics. 2022; 10(1):140. https://doi.org/10.3390/math10010140
Chicago/Turabian StyleDiab, Ahmed A. Zaki, Ali M. El-Rifaie, Magdy M. Zaky, and Mohamed A. Tolba. 2022. "Optimal Sizing of Stand-Alone Microgrids Based on Recent Metaheuristic Algorithms" Mathematics 10, no. 1: 140. https://doi.org/10.3390/math10010140
APA StyleDiab, A. A. Z., El-Rifaie, A. M., Zaky, M. M., & Tolba, M. A. (2022). Optimal Sizing of Stand-Alone Microgrids Based on Recent Metaheuristic Algorithms. Mathematics, 10(1), 140. https://doi.org/10.3390/math10010140