New Applied Problems in the Theory of Acyclic Digraphs
Abstract
:1. Introduction
2. Optimal Blocking of Selected Vertices of the Acyclic Digraph
3. Optimal Algorithm for Converting an Acyclic Digraph into a Strongly Connected One
4. Recurrent Algorithm for Class Allocation Cyclic Equivalence
5. Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harary, F.; Norman, R.Z.; Cartwright, D. Structural Models: An Introduction to the Theory of Directed Graphs; Wiley: New York, NY, USA, 1965. [Google Scholar]
- Wasserman, S.S. Models for Binary Directed Graphs and Their Applications. Adv. Appl. Prob. 1978, 10, 803–818. [Google Scholar] [CrossRef]
- Bang-Jensen, J.; Gutin, G. Classes of Directed Graphs; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Ford, L.R., Jr.; Fulkerson, D.R. Maximal Flow Through a Network. Can. J. Math. 1956, 8, 399–404. [Google Scholar] [CrossRef]
- Ford, L.R., Jr.; Fulkerson, D.R. A Simple Algorithm for Finding Maximal Network Flows and an Application to the Hitchcock Problem. Can. J. Math. 1957, 9, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; The MIT Press: New York, NY, USA, 2009. [Google Scholar]
- Cook, W.J.; Cunningham, W.H.; Pulleyblank, W.R.; Schriver, A. Combinatorial Optimization. Wiley Ser. Discret. Math. Optim. 2011, 33, 48–49. [Google Scholar]
- Potapov, A.P.; Goemann1, B.; Wingender1, E. The pairwise disconnectivity index as a new metric for the topological analysis of regulatory networks. BMC Bioinform. 2008, 9, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheridan, P.; Kamimura, T.; Shimodaira, H. A Scale-Free Structure Prior for Graphical Models with Applications in Functional Genomics. PLoS ONE 2010, 5, e13580. [Google Scholar] [CrossRef]
- Georgiadis, L.; Giuseppe, F.I.; Parotsidis, N. Strong Connectivity in Directed Graphs under Failures, with Applications. SIAM J. Comput. 2020, 49, 865–926. [Google Scholar] [CrossRef]
- Melo, B.; Brandao, I.; Tomei, C.; Guerreiro, T. Directed graphs and interferometry. J. Opt. Soc. Am. B 2020, 37, 2199–2208. [Google Scholar] [CrossRef]
- Mezic, I.; Fonoberov, V.A.; Fonoberova, M.; Sahai, T. Spectral Complexity of Directed Graphs and Application to Structural Decomposition. Complexity 2019, 9610826. [Google Scholar] [CrossRef]
- Marques, A.G.; Segarra, S.; Mateos, G. Signal Processing on Directed Graphs: The Role of Edge Directionality When Processing and Learning From Network Data. IEEE Signal Process. Mag. 2020, 37, 99–116. [Google Scholar] [CrossRef]
- Dokka, T.; Kouvela, A.; Spieksma, F.C.R. Approximating the multi-level bottleneck assignment problem. Oper. Res. Lett. 2012, 40, 282–286. [Google Scholar] [CrossRef]
- Zwick, U. The smallest networks on which the Ford-Fulkerson maximum flow procedure may fail to terminate. Theor. Comput. Sci. 1995, 148, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Backman, S.; Huynh, T. Transfinite Ford–Fulkerson on a finite network. Computability 2018, 7, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Allen, B.; Sample, C.; Jencks, R.; Withers, J.; Steinhagen, P.; Brizuela, L.; Kolodny, J.; Parke, D.; Lippner, G.; Dementieva, Y.A. Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs. PLoS Comput. Biol. 2020, 16, e1007529. [Google Scholar] [CrossRef]
- Bulgakov, V.P.; Avramenko, T.V.; Tsitsiashvili, G.S. Critical analysis of protein signaling networks involved in the regulation of plant secondary metabolism: Focus on anthocyanins. Crit. Rev. Biotechnol. 2017, 37, 685–700. [Google Scholar] [CrossRef]
- Bulgakov, V.P.; Wu, H.C.; Jinn, T.L. Coordination of ABA and Chaperone Signalling in Plant Stress Responses. Trends Plant Sci. 2019, 24, 636–651. [Google Scholar] [CrossRef]
- Fàbregas, N.; Lozano-Elena, F.; Blasco-Escámez, D.; Tohge, T.; Martínez-Andújar, C.; Albacete, A.; Osorio, S.; Bustamante, M.; Riechmann, J.L.; Nomura, T.; et al. Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nat. Commun. 2018, 9, 4680. [Google Scholar] [CrossRef] [Green Version]
- Bulgakov, V.P.; Avramenko, T.V. Linking Brassinosteroid and ABA Signaling in the Context of Stress Acclimation. Int. J. Mol. Sci. 2020, 21, 5108. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, J.; Karp, R.M. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems. J. ACM 1972, 19, 248–264. [Google Scholar] [CrossRef]
- Arlazarov, V.L.; Dinitz, E.A.; Ilyashenko, Y.S.; Karzanov, A.V.; Karpenko, S.M.; Kirillov, A.A.; Konstantinov, N.N.; Kronrod, M.A.; Kuznetsov, O.P.; Okun’, L.B.; et al. Georgy Maksimovich Adelson-Velsky (obituary). Russ. Math. Surv. 2014, 69, 743–751. [Google Scholar] [CrossRef]
- Monjurul Alom, B.M.; Someresh, D.; Islam, M.S. Finding the Maximum Matching in a Bipartite Graph. DUET J. 2010, 1, 33–36. [Google Scholar]
- Tutte, W.T. The method of alternating paths. Combinatorica 1982, 2, 325–332. [Google Scholar] [CrossRef]
- Pemmaraju, S.; Skiena, S. Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Tsitsiashvili, G.; Osipova, M.A. Cluster Formation in an Acyclic Digraph Adding New Edges. Reliab. Theory Appl. 2021, 16, 37–40. [Google Scholar]
- Tarjan, R. Depth-first Search and Linear Graph Algorithms. SIAM J. Comput. 1972, 1, 146–160. [Google Scholar] [CrossRef]
- Tsitsiashvili, G. Sequential algorithms of graph nodes factorization. Reliab. Theory Appl. 2013, 8, 30–33. [Google Scholar]
- Tsitsiashvili, G.; Kharchenko, Y.N.; Losev, A.S.; Osipova, M.A. Analysis of Hubs Loads in Biological Networks. Reliab. Theory Appl. 2014, 9, 7–10. [Google Scholar]
Matrice Partial Order | Clusters Set | Clusters Set | Clusters Set | Clusters Set B |
---|---|---|---|---|
clusters of set | meanings on step | 0 | 0 | |
clusters of set | 1 | |||
clusters of set | meanings on step | |||
clusters of set B | meanings on step | 0 | meanings on step |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsitsiashvili, G.; Bulgakov, V. New Applied Problems in the Theory of Acyclic Digraphs. Mathematics 2022, 10, 45. https://doi.org/10.3390/math10010045
Tsitsiashvili G, Bulgakov V. New Applied Problems in the Theory of Acyclic Digraphs. Mathematics. 2022; 10(1):45. https://doi.org/10.3390/math10010045
Chicago/Turabian StyleTsitsiashvili, Gurami, and Victor Bulgakov. 2022. "New Applied Problems in the Theory of Acyclic Digraphs" Mathematics 10, no. 1: 45. https://doi.org/10.3390/math10010045
APA StyleTsitsiashvili, G., & Bulgakov, V. (2022). New Applied Problems in the Theory of Acyclic Digraphs. Mathematics, 10(1), 45. https://doi.org/10.3390/math10010045