Effective Identification and Localization of Single and Multiple Breathing Cracks in Beams under Gaussian Excitation Using Time-Domain Analysis
Abstract
:1. Introduction
2. Time-Domain Methods
2.1. Skewness and Kurtosis Algorithms
2.2. Shannon Entropy
3. Numerical Simulation
Modeling of Breathing Cracks
4. Numerical Results and Discussions
4.1. Single Breathing Crack
4.1.1. Case Study 1
4.1.2. Case Study 2
4.1.3. Case Study 3
4.1.4. Case Study 4
4.2. Effect of the Number of Measuring Points in Locating Breathing Cracks
4.3. Effect of Spatial Location of Load on Breathing Crack Identification
4.4. Multiple Breathing Cracks
4.5. Noise Immunity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, W.; Su, Z.; Radzieński, M.; Cao, M.; Ostachowicz, W. Nonlinear pseudo-force in a breathing crack to generate harmonics. J. Sound Vib. 2021, 492, 115734. [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.; Liu, K. Nonlinear vibration analysis of a beam with a breathing crack. Appl. Sci. 2019, 9, 3874. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Shang, X. Analysis on nonlinear vibration of breathing cracked beam. J. Sound Vib. 2019, 461, 114901. [Google Scholar] [CrossRef]
- Al-Hababi, T.; Alkayem, N.F.; Cui, L.; Zhang, S.; Liu, C.; Cao, M. The Coupled Effect of Temperature Changes and Damage Depth on Natural Frequencies in Beam-Like Structures. Struct. Durab. Health Monit. 2022, 16, 15–35. [Google Scholar] [CrossRef]
- Cui, L.; Xu, H.; Ge, J.; Cao, M.; Xu, Y.; Xu, W.; Sumarac, D. Use of Bispectrum Analysis to Inspect the Non-Linear Dynamic Characteristics of Beam-Type Structures Containing a Breathing Crack. Sensors 2021, 21, 1177. [Google Scholar] [CrossRef]
- Prawin, J.; Rao, A.R. Breathing Crack Detection Using Linear Components and Their Physical Insight. In Advances in Structural Vibration; Springer: Berlin/Heidelberg, Germany, 2021; pp. 73–84. [Google Scholar]
- Bovsunovsky, A.; Surace, C. Non-linearities in the vibrations of elastic structures with a closing crack: A state of the art review. Mech. Syst. Signal Process. 2015, 62, 129–148. [Google Scholar] [CrossRef]
- Kharazan, M.; Irani, S.; Noorian, M.A.; Salimi, M.R. Effect of a breathing crack on the damping changes in nonlinear vibrations of a cracked beam: Experimental and theoretical investigations. J. Vib. Control 2020, 27, 1077546320960312. [Google Scholar] [CrossRef]
- Chomette, B. Nonlinear multiple breathing cracks detection using direct zeros estimation of higher-order frequency response function. Commun. Nonlinear Sci. Numer. Simul. 2020, 89, 105330. [Google Scholar] [CrossRef]
- Prawin, J. Breathing crack damage diagnostic strategy using improved MFCC features. J. Intell. Mater. Syst. Struct. 2021, 32, 2437–2462. [Google Scholar] [CrossRef]
- Li, D.; Xu, Z.; Ostachowicz, W.; Cao, M.; Liu, J. Identification of multiple cracks in noisy conditions using scale-correlation-based multiscale product of SWPT with laser vibration measurement. Mech. Syst. Signal Process. 2020, 145, 106889. [Google Scholar] [CrossRef]
- Prawin, J.; Rama Mohan Rao, A. Vibration-based breathing crack identification using non-linear intermodulation components under noisy environment. Struct. Health Monit. 2020, 19, 86–104. [Google Scholar] [CrossRef]
- Matveev, V.; Bovsunovsky, A. Vibration-based diagnostics of fatigue damage of beam-like structures. J. Sound Vib. 2002, 249, 23–40. [Google Scholar] [CrossRef]
- Kullaa, J.; Santaoja, K.; Eymery, A. Vibration-based structural health monitoring of a simulated beam with a breathing crack. Key Engineering Materials. Trans. Tech. Publ. 2013, 569, 1093–1100. [Google Scholar]
- Cheng, C.; Peng, Z.; Dong, X.; Zhang, W.; Meng, G. A novel damage detection approach by using Volterra kernel functions based analysis. J. Frankl. Inst. 2015, 352, 3098–3112. [Google Scholar] [CrossRef]
- Villani, L.G.; Da Silva, S.; Cunha, A., Jr. Damage detection in uncertain nonlinear systems based on stochastic Volterra series. Mech. Syst. Signal Process. 2019, 125, 288–310. [Google Scholar] [CrossRef] [Green Version]
- Prawin, J.; Rao, A.R.M. Extraction of Opening and Closing States of Cracked Structure using Adaptive Volterra Filter Model. Procedia Struct. Integr. 2019, 14, 234–241. [Google Scholar] [CrossRef]
- Peng, Z.; Li, J.; Hao, H.; Li, C. Nonlinear structural damage detection using output-only Volterra series model. Struct. Control Health Monit. 2021, 28, e2802. [Google Scholar] [CrossRef]
- Kullaa, J.; Miettinen, M. Fatigue crack modelling for damage detection. In Proceedings of the 8th European Workshop on Structural Health Monitoring (EWSHM 2016), Bilbao, Spain, 5–8 July 2016; pp. 5–8. [Google Scholar]
- Smith, S.; Wang, G.; Wu, D. Bayesian approach to breathing crack detection in beam structures. Eng. Struct. 2017, 148, 829–838. [Google Scholar] [CrossRef]
- Wang, X.; Wu, N. Crack identification at welding joint with a new smart coating sensor and entropy. Mech. Syst. Signal Process. 2019, 124, 65–82. [Google Scholar] [CrossRef]
- Lu, Z.R.; Yang, D.; Liu, J.; Wang, L. Nonlinear breathing crack identification from time-domain sensitivity analysis. Appl. Math. Model. 2020, 83, 30–45. [Google Scholar] [CrossRef]
- Asnaashari, E.; Sinha, J.K. Development of residual operational deflection shape for crack detection in structures. Mech. Syst. Signal Process. 2014, 43, 113–123. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, D.; Kuang, Y.; Mo, X. A bicoherence-based nonlinearity measurement method for identifying the location of breathing cracks in blades. Int. J. -Non-Linear Mech. 2021, 135, 103751. [Google Scholar] [CrossRef]
- Prawin, J. Real-time reference-free breathing crack identification using ambient vibration data. Struct. Control. Health Monit. 2021, 135, e2903. [Google Scholar] [CrossRef]
- Prawin, J.; Lakshmi, K.; Rao, A.R.M. A novel singular spectrum analysis–based baseline-free approach for fatigue-breathing crack identification. J. Intell. Mater. Syst. Struct. 2018, 29, 2249–2266. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Liu, Z.; Liang, X.; Si, S. The entropy algorithm and its variants in the fault diagnosis of rotating machinery: A review. IEEE Access 2018, 6, 66723–66741. [Google Scholar] [CrossRef]
- Wang, Q.; Li, H.; Lin, J.; Zhang, C. Future trend forecast by empirical wavelet transform and autoregressive moving average. Sensors 2018, 18, 2621. [Google Scholar] [CrossRef] [Green Version]
- Figlus, T. A method for diagnosing gearboxes of means of transport using multi-stage filtering and entropy. Entropy 2019, 21, 441. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Diao, Y.; Zhang, X.; Sun, Z.; Guo, K.; Wang, Y. Wavelet entropy based structural damage identification under seismic excitation. Smart Mater. Struct. 2018, 27, 105002. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Q.; Wang, L.; Cheng, L.; Zhou, J. Early fault detection method for rotating machinery based on harmonic-assisted multivariate empirical mode decomposition and transfer entropy. Entropy 2018, 20, 873. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Gomez, A.; Amezquita-Sanchez, J.P.; Valtierra-Rodriguez, M.; Perez-Ramirez, C.A.; Dominguez-Gonzalez, A.; Chavez-Alegria, O. EMD-Shannon entropy-based methodology to detect incipient damages in a truss structure. Appl. Sci. 2018, 8, 2068. [Google Scholar] [CrossRef] [Green Version]
- Alkayem, N.F.; Shen, L.; Asteris, P.G.; Sokol, M.; Xin, Z.; Cao, M. A new self-adaptive quasi-oppositional stochastic fractal search for the inverse problem of structural damage assessment. Alex. Eng. J. 2022, 61, 1922–1936. [Google Scholar] [CrossRef]
- Sandoval, D.; Leturiondo, U.; Vidal, Y.; Pozo, F. Entropy indicators: An approach for low-speed bearing diagnosis. Sensors 2021, 21, 849. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.M.; Ghasemi-Ghalebahman, A.; Azadi, M.; Jafari, S.M. Crack initiation detection in crankshaft ductile cast iron based on information entropy of acoustic emission signals under tensile loading. Eng. Fail. Anal. 2021, 127, 105547. [Google Scholar] [CrossRef]
- Makki Alamdari, M.; Samali, B.; Li, J.; Lu, Y.; Mustapha, S. Structural condition assessment using entropy-based time series analysis. J. Intell. Mater. Syst. Struct. 2017, 28, 1941–1956. [Google Scholar] [CrossRef]
- Amezquita-Sanchez, J.P. Entropy algorithms for detecting incipient damage in high-rise buildings subjected to dynamic vibrations. J. Vib. Control 2021, 27, 426–436. [Google Scholar] [CrossRef]
- Andreaus, U.; Baragatti, P. Cracked beam identification by numerically analysing the nonlinear behaviour of the harmonically forced response. J. Sound Vib. 2011, 330, 721–742. [Google Scholar] [CrossRef]
- Habtour, E.; Cole, D.P.; Riddick, J.C.; Weiss, V.; Robeson, M.; Sridharan, R.; Dasgupta, A. Detection of fatigue damage precursor using a nonlinear vibration approach. Struct. Control Health Monit. 2016, 23, 1442–1463. [Google Scholar] [CrossRef]
- Prawin, J.; Rao, A.R.M.; Lakshmi, K. Nonlinear identification of structures using ambient vibration data. Comput. Struct. 2015, 154, 116–134. [Google Scholar] [CrossRef]
- Kaul, S. Crack diagnostics in beams using wavelets, kurtosis and skewness. Nondestruct. Test. Eval. 2014, 29, 99–122. [Google Scholar] [CrossRef]
- Andreaus, U.; Baragatti, P. Experimental damage detection of cracked beams by using nonlinear characteristics of forced response. Mech. Syst. Signal Process. 2012, 31, 382–404. [Google Scholar] [CrossRef]
- Giannini, O.; Casini, P.; Vestroni, F. Nonlinear harmonic identification of breathing cracks in beams. Comput. Struct. 2013, 129, 166–177. [Google Scholar] [CrossRef]
- Boungou, D.; Guillet, F.; El Badaoui, M.; Lyonnet, P.; Rosario, T. Fatigue damage detection using cyclostationarity. Mech. Syst. Signal Process. 2015, 58, 128–142. [Google Scholar] [CrossRef]
- Al-Hababi, T.; Cao, M.; Saleh, B.; Alkayem, N.F.; Xu, H. A Critical Review of Nonlinear Damping Identification in Structural Dynamics: Methods, Applications, and Challenges. Sensors 2020, 20, 7303. [Google Scholar] [CrossRef]
- Chavoshi, S.Z.; Booker, J.; Bradford, R.; Martin, M. A review of probabilistic structural integrity assessment in the nuclear sector and possible future directions. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 3227–3257. [Google Scholar] [CrossRef]
- Zhang, Y.; Macdonald, J.H.; Liu, S.; Harper, P.W. Damage detection of nonlinear structures using probability density ratio estimation. Comput.-Aided Civ. Infrastruct. Eng. 2021, 37, 878–893. [Google Scholar] [CrossRef]
- Kara, M. A higher order statistical moment based approach for the distribution of eigenvalues of beams with variable cracked depth. Mech. Syst. Signal Process. 2021, 161, 107965. [Google Scholar] [CrossRef]
- Cianetti, F.; Palmieri, M.; Braccesi, C.; Morettini, G. Correction formula approach to evaluate fatigue damage induced by non-Gaussian stress state. Procedia Struct. Integr. 2018, 8, 390–398. [Google Scholar] [CrossRef]
- Yu, L.; Zhu, J.H. Nonlinear damage detection using higher statistical moments of structural responses. Struct. Eng. Mech 2015, 54, 221–237. [Google Scholar] [CrossRef] [Green Version]
- Gres, S.; Ulriksen, M.D.; Döhler, M.; Johansen, R.J.; Andersen, P.; Damkilde, L.; Nielsen, S.A. Statistical methods for damage detection applied to civil structures. Procedia Eng. 2017, 199, 1919–1924. [Google Scholar] [CrossRef]
- Cacciola, P.; Impollonia, N.; Muscolino, G. Crack detection and location in a damaged beam vibrating under white noise. Comput. Struct. 2003, 81, 1773–1782. [Google Scholar] [CrossRef]
- Benfratello, S.; Cacciola, P.; Impollonia, N.; Masnata, A.; Muscolino, G. Numerical and experimental verification of a technique for locating a fatigue crack on beams vibrating under Gaussian excitation. Eng. Fract. Mech. 2007, 74, 2992–3001. [Google Scholar] [CrossRef]
- Lakshmi, K.; Rao, A.R.M. Output-only damage localization technique using time series model. Sādhanā 2018, 43, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Avendaño-Valencia, L.D.; Fassois, S.D. Damage/fault diagnosis in an operating wind turbine under uncertainty via a vibration response Gaussian mixture random coefficient model based framework. Mech. Syst. Signal Process. 2017, 91, 326–353. [Google Scholar] [CrossRef]
- Chua, K.C.; Chandran, V.; Acharya, U.R.; Lim, C.M. Application of higher order statistics/spectra in biomedical signals—A review. Med. Eng. Phys. 2010, 32, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Hoyle, R.H. Structural Equation Modeling: Concepts, Issues, and Applications; Sage: New York, NY, USA, 1995. [Google Scholar]
- Westfall, P.H. Kurtosis as peakedness, 1905–2014. RIP. Am. Stat. 2014, 68, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Ceravolo, R.; Civera, M.; Lenticchia, E.; Miraglia, G.; Surace, C. Detection and Localization of Multiple Damages through Entropy in Information Theory. Appl. Sci. 2021, 11, 5773. [Google Scholar] [CrossRef]
- Mousavi, M.; Holloway, D.; Olivier, J.; Alavi, A.H.; Gandomi, A.H. A Shannon entropy approach for structural damage identification based on self-powered sensor data. Eng. Struct. 2019, 200, 109619. [Google Scholar] [CrossRef]
- Mobarak, H.; Wu, H.; Spagnol, J.P.; Xiao, K. New crack breathing mechanism under the influence of unbalance force. Arch. Appl. Mech. 2018, 88, 341–372. [Google Scholar] [CrossRef]
- Cao, M.; Radzieński, M.; Xu, W.; Ostachowicz, W. Identification of multiple damage in beams based on robust curvature mode shapes. Mech. Syst. Signal Process. 2014, 46, 468–480. [Google Scholar] [CrossRef]
- Liu, T.; Xu, H.; Ragulskis, M.; Cao, M.; Ostachowicz, W. A data-driven damage identification framework based on transmissibility function datasets and one-dimensional convolutional neural networks: Verification on a structural health monitoring benchmark structure. Sensors 2020, 20, 1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mode | Cantilever Beam | Cantilever, Simply Supported Beam | Fixed-Fixed Beam | Simply Supported Beam |
---|---|---|---|---|
1 | 238.55 | 996.53 | 1434.70 | 626.65 |
2 | 1424.80 | 2953.40 | 3659.90 | 1723.20 |
Method | Depth | CB | CSSB | FFB | SSB | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Location | |||||||||||||
Skewness | ✓ | ✓ | ✗ | ✗ | ✓ | ✓ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ | |
✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Kurtosis | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✓ | ||
✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ||
Entropy | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-hababi, T.; Alkayem, N.F.; Zhu, H.; Cui, L.; Zhang, S.; Cao, M. Effective Identification and Localization of Single and Multiple Breathing Cracks in Beams under Gaussian Excitation Using Time-Domain Analysis. Mathematics 2022, 10, 1853. https://doi.org/10.3390/math10111853
Al-hababi T, Alkayem NF, Zhu H, Cui L, Zhang S, Cao M. Effective Identification and Localization of Single and Multiple Breathing Cracks in Beams under Gaussian Excitation Using Time-Domain Analysis. Mathematics. 2022; 10(11):1853. https://doi.org/10.3390/math10111853
Chicago/Turabian StyleAl-hababi, Tareq, Nizar Faisal Alkayem, Huaxin Zhu, Li Cui, Shixiang Zhang, and Maosen Cao. 2022. "Effective Identification and Localization of Single and Multiple Breathing Cracks in Beams under Gaussian Excitation Using Time-Domain Analysis" Mathematics 10, no. 11: 1853. https://doi.org/10.3390/math10111853
APA StyleAl-hababi, T., Alkayem, N. F., Zhu, H., Cui, L., Zhang, S., & Cao, M. (2022). Effective Identification and Localization of Single and Multiple Breathing Cracks in Beams under Gaussian Excitation Using Time-Domain Analysis. Mathematics, 10(11), 1853. https://doi.org/10.3390/math10111853