Modified Bernstein–Durrmeyer Type Operators
Abstract
:1. Introduction
2. Auxiliary Results
- The images of the monomials (called also Korovkin test functions) by operator L, written , for .
- The central moments of order m, , for .
3. Main Results
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernstein, S.N. Demonstration du theoreme de Weierstrass fondee sur le calcul de probabilities. Comm. Soc. Math. Kharkov 1912, 13, 1–2. [Google Scholar]
- Lorentz, G.G. Bernstein Polynomials; University Toronto Press: Toronto, ON, Canada, 1953. [Google Scholar]
- Farouki, R. The Bernstein polynomial basis: A centennial retrospective. Comput. Aided Geom. Design 2012, 29, 379–419. [Google Scholar] [CrossRef]
- Usta, F. On New Modification of Bernstein Operators: Theory and Applications. Iran. J. Sci. Technol. Trans. Sci. 2020, 44, 1119–1124. [Google Scholar] [CrossRef]
- Popoviciu, T. Asupra demonstraţiei teoremei lui Weierstrass cu ajutorul polinoamelor de interpolare. In Lucrările Sesiunii Generale Şt. din 2–12 iunie 1950; Editura Academiei Republicii Populare Romane: Bucuresti, Romania, 1951; pp. 1–4, (translated into English by D. Kacsó, On the proof of Weierstrass theorem using intepolation polynomials. East J. Approx. 1998, 4, 107–110). [Google Scholar]
- Bohman, H. On approximation of continuous and of analytic function. Ark. Mat. 1952, 2, 43–56. [Google Scholar] [CrossRef]
- Korovkin, P.P. On the convergence of linear positive operators in the space of continuous functions. Dokl. Akad. Nauk. SSSR 1953, 90, 961–964. (In Russian) [Google Scholar]
- Ditzian, Z.; Totik, V. Moduli of Smoothness; Springer: New York, NY, USA, 1987. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kajla, A.; Miclǎuş, D. Modified Bernstein–Durrmeyer Type Operators. Mathematics 2022, 10, 1876. https://doi.org/10.3390/math10111876
Kajla A, Miclǎuş D. Modified Bernstein–Durrmeyer Type Operators. Mathematics. 2022; 10(11):1876. https://doi.org/10.3390/math10111876
Chicago/Turabian StyleKajla, Arun, and Dan Miclǎuş. 2022. "Modified Bernstein–Durrmeyer Type Operators" Mathematics 10, no. 11: 1876. https://doi.org/10.3390/math10111876
APA StyleKajla, A., & Miclǎuş, D. (2022). Modified Bernstein–Durrmeyer Type Operators. Mathematics, 10(11), 1876. https://doi.org/10.3390/math10111876