Calculating Column Separation in Liquid Pipelines Using a 1D-CFD Coupled Model
Abstract
:1. Introduction
2. Theoretical Backgrounds
2.1. DGCM
2.2. MTPA
2.3. CFD Analysis
2.4. CFD Coupling
3. Numerical Results
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaudhry, M. Applied Hydraulic Transients; Van Nostrana Reinhold Co.: New York, NY, USA, 1987. [Google Scholar]
- Wylie, E.B.; Streeter, V.L. Fluid Transients in Systems; Prentice-Hall: Upper Saddle River, NJ, USA, 1993. [Google Scholar]
- Bergant, A.; Simpson, A.R.; Tijsseling, A.S. Water hammer with column separation: A historical review. J. Fluids Struct. 2006, 22, 135–171. [Google Scholar] [CrossRef] [Green Version]
- Wylie, E. Simulation of vaporous and gaseous cavitation. ASME J. Fluids Eng. 1984, 106, 307–311. [Google Scholar] [CrossRef]
- Bergant, A.; Simpson, A.R. Range of Validity of the Discrete Vapour Cavity Model for Pipeline Water-Hammer; University of Adelaide, Department of Civil and Environmental Engineering: Adelaide, Australia, 1994. [Google Scholar]
- Simpson, A.; Bergant, A. Numerical comparison of pipe column-separation models. J. Hydraul. Eng. 1994, 120, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Provoost, G.A.; Wylie, E.B. Discrete gas model to represent distributed free gas in liquids. In Proceedings of the 5th International Symposium on Water Column Separation, Obernach, West Germany, 1981; Volume 1, pp. 28–30. [Google Scholar]
- Adamkowski, A.; Lewandowski, M. Investigation of hydraulic transients in a pipeline with column separation. J. Hydraul. Eng. 2012, 138, 935–944. [Google Scholar] [CrossRef]
- Bergant, A.; Simpson, A.R. Pipeline column separation flow regimes. J. Hydraul. Eng. 1999, 125, 835–848. [Google Scholar] [CrossRef] [Green Version]
- Khani, D.; Lim, Y.H.; Malekpour, A. An Innovative Open Channel Based Model for Calculating Column Separation in Conduit Systems. J. Hydraul. Eng. 2022; under review. [Google Scholar]
- Khani, D.; Lim, Y.H.; Malekpour, A. Investigating the Performance of the Modified Two-Component Pressure Approach in Capturing Column Separation with Large Vapor Cavities. J. Hydraul. Res. 2022; under review. [Google Scholar]
- Vasconcelos, G.J.; Marwell, T.B. Innovative simulation of unsteady low-pressure flows in water mains. J. Hydraul. Eng. 2011, 137, 1490–1499. [Google Scholar] [CrossRef] [Green Version]
- Simpson, A.; Wylie, E. Large water-hammer pressures for column separation in pipelines. J. Hydraul. Eng. 1991, 117, 1310–1316. [Google Scholar] [CrossRef] [Green Version]
- Martin, C. Experimental investigation of column separation with rapid closure of downstream valve. In Fourth International Conference on Pressure Surges; BHRA Fluid Engineering: Cranfield, UK, 1983; pp. 77–88. [Google Scholar]
- Autrique, R.; Rodal, A.E. Laboratory studies of water column separation. IOP Conf. Ser. Mater. Sci. Eng. 2013, 52, 022022. [Google Scholar] [CrossRef] [Green Version]
- Baltzer, R.A. Column separation accompanying liquid transients in pipes. J. Basic Eng. 1967, 89, 837–846. [Google Scholar] [CrossRef]
- Baltzer, R. A Study of Column Separation Accompanying Transient Flow of Liquids in Pipes. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1967. [Google Scholar]
- Siemons, J. The phenomenon of cavitation in a horizontal pipe-line due to a sudden pump-failure. J. Hydraul. Res. 1967, 5, 135–152. [Google Scholar] [CrossRef]
- Kalkwijk, J.; Kranenburg, C.; Vreugdenhil, C.; De Vries, A. Cavitation Caused by Water Hammer in Horizontal; Delft Hydraulics Laboratory: Delft, The Netherlands, 1972; Publication No. 97. [Google Scholar]
- Marsden, N.; Fox, J. An alternative approach to the problem of column separation in an elevated section of pipeline. In Second International Conference on Pressure Surges; BHRA: London, UK, 1976; pp. 1–13. [Google Scholar]
- Tang, X.; Duan, X.; Gao, H.; Li, X.; Shi, A.X. CFD investigations of transient cavitation flows in pipeline based on weakly-compressible model. Water 2020, 12, 448. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhou, L.; Liu, D.; Karney, B.; Wang, P.; Xia, L.; Ma, J.; Xu, C. CFD Approach for Column Separation in Water Pipelines. J. Hydraul. Eng. 2016, 142, 04016036. [Google Scholar] [CrossRef] [Green Version]
- Warda, H.A.; Wahba, E.M.; El-Din, A.M. Computational Fluid Dynamics (CFD) simulation of liquid column separation in pipe transients. Alex. Eng. J. 2020, 59, 3451–3462. [Google Scholar] [CrossRef]
- Mandair, S. 1D and 3D Water-Hammer Models: The Energetics of High Friction Pipe Flow and Hydropower Load Rejection. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2020. [Google Scholar]
- Zhang, X.-X.; Cheng, Y.-G. Simulation of hydraulic transients in hydropower systems using the 1-D-3-D coupling approach. J. Hydrodyn. 2012, 24, 595–604. [Google Scholar] [CrossRef]
- Zhang, X.X.; Cheng, Y.G.; Xia, L.S.; Yang, J.D. Dynamic characteristics of a pump-turbine during hydraulic transients of a model pumped-storage system: 3D CFD simulation. IOP Conf. Ser. Earth Environ. Sci. 2014, 22, 032030. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Yang, S.; Wu, P.; Wang, L. MOC-CFD coupled approach for the analysis of the fluid dynamic interaction between water hammer and pump. J. Hydraul. Eng. 2015, 141, 06015003. [Google Scholar] [CrossRef]
- Maddahian, R.; Shaygan, F.; Bucur, D.M. Developing a 1D-3D model to investigate the effect of entrapped air on pressure surge during the rapid filling of a pipe. IOP Conf. Ser. Earth Environ. Sci. 2021, 774, 012069. [Google Scholar] [CrossRef]
- Cui, X.; Wong, L.N. A 3D fully thermo–hydro–mechanical coupling model for saturated poroelastic medium. Computer Methods Appl. Mech. Eng. 2022, 394, 114939. [Google Scholar] [CrossRef]
- Failer, L.; Richter, T. A parallel Newton multigrid framework for monolithic fluid-structure interactions. J. Sci. Comput. 2020, 82, 28. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Guo, J.; Lu, J.; Niu, J.; Li, F.; Xu, Y. The comparison between nonlinear and linear preconditioning JFNK method for transient neutronics/thermal-hydraulics coupling problem. Ann. Nucl. Energy 2019, 132, 357–368. [Google Scholar] [CrossRef]
- Vasconcelos, J.G.; Wright, S.J.; Roe, P.L. Improved simulation of flow regime transition in sewers: Two-component pressure approach. J. Hydraul. Eng. 2006, 132, 553–562. [Google Scholar] [CrossRef]
- Vasconcelos, J.G.; Wright, S.J. Comparison between the two-component pressure approach and current transient flow solvers. J. Hydraul. Res. 2007, 45, 178–187. [Google Scholar] [CrossRef]
- Sanders, B.F.; Bradford, S.F. Network implementation of the two-component pressure approach for transient flow in storm sewers. J. Hydraul. Eng. 2010, 137, 158–172. [Google Scholar] [CrossRef]
- Cunge, J.A.; Wegner, M. Numerical Integration of Bane de Saint-Venant’s Flow Equations by Means of an Implicit Scheme of Finite Differences. Applications in the Case of Alternately Free and Pressurized Flow in a Tunnel. La Houille Blanche 1964, 1, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Kerger, F.; Archambeau, P.; Erpicum, S.; Dewals, B.J.; Pirotton, M. An exact Riemann solver and a Godunov scheme for simulating highly transient mixed flows. J. Comput. Appl. Math. 2011, 235, 2030–2040. [Google Scholar] [CrossRef] [Green Version]
- Khani, D.; Lim, Y.H.; Malekpour, A. Hydraulic Transient Analysis of Sewer Pipe Systems Using a Non-Oscillatory Two-Component Pressure Approach. Water 2020, 12, 2896. [Google Scholar] [CrossRef]
- Khani, D.; Lim, Y.H.; Malekpour, A. A Mixed Flow Analysis of Sewer Pipes with Different Shapes Using a Non-Oscillatory Two-Component Pressure Approach (TPA). Modelling 2021, 2, 467–481. [Google Scholar] [CrossRef]
- Toro, E.F. Shock-Capturing Methods for Free-Surface Shallow Flows; John Wiley: Chichester, NY, USA, 2001. [Google Scholar]
- LeVeque, R. Finite Volume Methods for Hyperbolic Problems; Cambridge Press: Cambridge, UK, 2002. [Google Scholar]
- Malekpour, A.; Karney, B. Spurious Numerical Oscillations in the Preissmann Slot Method: Origin and Suppression. J. Hydraul. Eng. ASCE 2015, 142, 04015060. [Google Scholar] [CrossRef] [Green Version]
- ANSYS, Inc. ANSYS Fluent Theory Guide, Release 15.0; ANSYS, Inc.: Canonsburg, PA, USA, 2013. [Google Scholar]
- Ghidaoui, M.; Karney, B.W. Equivalent differential equations in fixed-grid characteristics method. J. Hydraul. Eng. 1994, 120, 1159–1175. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khani, D.; Lim, Y.H.; Malekpour, A. Calculating Column Separation in Liquid Pipelines Using a 1D-CFD Coupled Model. Mathematics 2022, 10, 1960. https://doi.org/10.3390/math10121960
Khani D, Lim YH, Malekpour A. Calculating Column Separation in Liquid Pipelines Using a 1D-CFD Coupled Model. Mathematics. 2022; 10(12):1960. https://doi.org/10.3390/math10121960
Chicago/Turabian StyleKhani, David, Yeo Howe Lim, and Ahmad Malekpour. 2022. "Calculating Column Separation in Liquid Pipelines Using a 1D-CFD Coupled Model" Mathematics 10, no. 12: 1960. https://doi.org/10.3390/math10121960
APA StyleKhani, D., Lim, Y. H., & Malekpour, A. (2022). Calculating Column Separation in Liquid Pipelines Using a 1D-CFD Coupled Model. Mathematics, 10(12), 1960. https://doi.org/10.3390/math10121960