Fixed Point Results for Perov–Ćirić–Prešić-Type Θ-Contractions with Applications
Abstract
:1. Introduction
2. Preliminaries
- (i)
- as the zero matrix of order ;
- (ii)
- , the set of real matrices with positive components in
- (iii)
- , the set of all matrices with positive components in
- (iv)
- ⊝ as the zero matrix of order ;
- (v)
- I as the identity matrix of order ;
- (vi)
- as the set of complex numbers.
- (i)
- if and only if
- (ii)
- (iii)
- 1.
- Ξ as ;
- 2.
- for for every with ;
- 3.
- and
- ()
- ()
- for , if and only if
- ()
- there exists and such that
- ()
- for all such that then
- ()
- for of
- ()
- there exist and such that for where
3. Main Result
4. Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Ćirić, L.B. A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 1974, 45, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Prešić, S.B. Sur une classe d’inéquations aux différences finies et sur la convergence de certaines suites. Publ. Inst. Math. 1965, 5, 75–78. [Google Scholar]
- Ćirić, L.B.; Prešić, S.B. On Prešić type generalization of the Banach contraction mapping principle. Acta Math. Univ. Comenianae 2007, 76, 143–147. [Google Scholar]
- Shukla, S.; Sen, R.; Radenović, S. Set-Valued Prešić type contraction in metric spaces. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. Tomul LXI 2015, f.2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Radenović, S. A generalization of Prešić type mappings in 0-complete ordered partial metric spaces. Chin. J. Math. 2013, 2013, 859531. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Radojević, S.; Veljković, Z.A.; Radenović, S. Some coincidence and common fixed point theorems for ordered Prešić-Reich type contractions. J. Inequal. Appl. 2013, 520. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Radenović, S.; Pantelić, S. Some fixed point theorems for Prešić-Hardy-Rogers type contractions in metric spaces. J. Math. 2013, 2013, 295093. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Radenovic, S. Prešić-Maia type theorems in ordered metric spaces. Gulf J. Math. 2014, 2, 73–78. [Google Scholar]
- Pǎcurar, M. A multi-step iterative method for approximating fixed points of prešić-kannan operators. Acta Math. Univ. Comenianae 2010, 79, 77–88. [Google Scholar]
- Abbas, M.; Berzig, M.; Nazir, T.; Karapınar, E. Iterative approximation of fixed points for Prešić type F-contraction operators. U.P.B. Sci. Bull. Ser. A 2016, 78, 147–160. [Google Scholar]
- Pǎcurar, M. Approximating common fixed points of Presic-Kannantypeoperators by a multi-step iterative method. An. Stiint. Univ. Ovidius Constanţa Ser. Mat. 2009, 17, 153–168. [Google Scholar]
- Berzig, M.; Samet, B. Solving systems of nonlinear matrix equations involving Lipshitzian mappings. Fixed Point Theory Appl. 2011, 2011, 89. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, M.I.; Al-Mazrooei, A.E.; Ahmad, J. Set-valued G-Prešić type F-contractions and fixed point theorems. J. Math. Anal. 2019, 10, 26–38. [Google Scholar]
- Perov, A.I. On the Cauchy problem for a system of ordinary differential equations. Pviblizhen. Met. Reshen. Differ. Uvavn. 1964, 2, 115–134. [Google Scholar]
- Rao, S.S. On vector valued metric spaces. Palest. Math. 2015, 4, 416–418. [Google Scholar]
- Abbas, M.; Rakočević, V.; Iqbal, A. Fixed points of Perov type contractive mappings on the set endowed with a graphic structure. Rev. Real Acad. Cienc. Exactas Fís. Nat. A. Mat. 2018, 112, 209–228. [Google Scholar] [CrossRef]
- Cvetković, M.; Rakočević, V. Common fixed point results for mappings of Perov type. Math. Nachr. 2015, 288, 1873–1890. [Google Scholar] [CrossRef]
- Cvetković, M.; Rakočević, V. Extensions of Perov theorem. Carpathian J. Math. 2015, 31, 181–188. [Google Scholar] [CrossRef]
- Flip, D.; Petruşel, A. Fixed point theorems on space endowed with vector valued metrics. Fixed Point Theory Appl. 2010, 2010, 281381. [Google Scholar] [CrossRef] [Green Version]
- Ilić, D.; Cvetković, M.; Gajić, L.; Rakočević, V. Fixed points of sequence of Ćirić generalized contractions of Perov type. Mediterr. J. Math. 2016, 13, 3921–3937. [Google Scholar] [CrossRef]
- Vetro, F.; Radenović, S. Some results of Perov type in rectangular cone metric spaces. J. Fixed Point Theory Appl. 2018, 20, 41. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. A new generalization of the Banach contraction principle. J. Ineq. Appl. 2014, 2014, 388. [Google Scholar] [CrossRef] [Green Version]
- Altun, I.; Hussain, N.; Qasim, M.; Al-Sulami, H.H. A New Fixed Point Result of Perov Type and Its Application to a Semilinear Operator System. Mathematics 2019, 7, 1019. [Google Scholar] [CrossRef] [Green Version]
- Varga, R.S. Matrix Iterative Analysis; Springer Series in Computational Mathematics; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Hu, C.H.; Yang, C.C. Vector Valued Functions and Their Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 1–172. [Google Scholar]
- Altun, I.; Olgun, M. Fixed point results for Perov type F-contractions and an application. J. Fixed Point Theory Appl. 2020, 22, 46. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, J.; Al-Mezel, S.A.; Agarwal, R.P. Fixed Point Results for Perov–Ćirić–Prešić-Type Θ-Contractions with Applications. Mathematics 2022, 10, 2062. https://doi.org/10.3390/math10122062
Ahmad J, Al-Mezel SA, Agarwal RP. Fixed Point Results for Perov–Ćirić–Prešić-Type Θ-Contractions with Applications. Mathematics. 2022; 10(12):2062. https://doi.org/10.3390/math10122062
Chicago/Turabian StyleAhmad, Jamshaid, Saleh Abdullah Al-Mezel, and Ravi P. Agarwal. 2022. "Fixed Point Results for Perov–Ćirić–Prešić-Type Θ-Contractions with Applications" Mathematics 10, no. 12: 2062. https://doi.org/10.3390/math10122062
APA StyleAhmad, J., Al-Mezel, S. A., & Agarwal, R. P. (2022). Fixed Point Results for Perov–Ćirić–Prešić-Type Θ-Contractions with Applications. Mathematics, 10(12), 2062. https://doi.org/10.3390/math10122062