Existence of the Limit of Ratios of Consecutive Terms for a Class of Linear Recurrences
Abstract
:1. Introduction
2. The Main Results
3. Proofs of the Main Results
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Knott, R. Available online: https://r-knott.surrey.ac.uk/Fibonacci/fib.html (accessed on 12 June 2022).
- Berend, D.; Kumar, R. Consecutive Ratios in Second-Order Linear Recurrence Sequences. Unif. Distrib. Theory 2022, 17, 51–76. Available online: http://pcwww.liv.ac.uk/~karpenk/JournalUDT/vol17/no2/03_Berend_Kumar.pdf (accessed on 12 June 2022).
- Stein, P.C. Elementary Properties and Applications of the Fibonacci Sequence. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 1977. [Google Scholar]
- Jeske, J.A. Linear recurrence relations—Part I. Fibonacci Quart. 1963, 1, 69–74. [Google Scholar]
- Kelley, W.G.; Peterson, A.C. An introduction with applications. In Difference Equations, 2nd ed.; Harcourt/Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Salinelli, E.; Tomarelli, F. Discrete Dynamical Models; Unitext; Translated from the 2014 Italian Original, La Matematica per il 3+2; Springer: Cham, Switzerland, 2014; Volume 76. [Google Scholar]
- Koshy, T. Fibonacci and Lucas Numbers with Applications; Pure and Applied Mathematics (Hoboken); John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; Volume 1. [Google Scholar]
- Koshy, T. Fibonacci and Lucas Numbers with Applications; Pure and Applied Mathematics (Hoboken); John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; Volume 2. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall Series in Automatic Computation; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Andrica, D.; Bagdasar, O. Recurrent sequences—Key results, applications, and problems. In Problem Books in Mathematics; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Dunlap, R.A. The Golden Ratio and Fibonacci Numbers; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 1997. [Google Scholar]
- Meisner, G.B. The Golden Ratio—The Divine Beauty of Mathematics; Race Point Publishing: London, UK, 2018. [Google Scholar]
- Posamentier, A.S.; Farber, W.L.; Germain-Williams, T.L.; Paris, E.S.; Thaller, B.; Lehmann, I.H. 100 Commonly Asked Questions in Math Class: Answers That Promote Mathematical Understanding, Grades 6–12; SAGE Publications Inc.: Thousand Oaks, CA, USA, 2013. [Google Scholar]
- Fiorenza, A.; Vincenzi, G. Limit of ratio of consecutive terms for general order-k linear homogeneous recurrences with constant coefficients. Chaos Solitons Fractals 2011, 44, 145–152. [Google Scholar] [CrossRef]
- Fiorenza, A.; Vincenzi, G. From Fibonacci Sequence to the Golden Ratio. J. Math. 2013, 3, 204674. Available online: https://www.hindawi.com/journals/jmath/2013/204674/ (accessed on 12 June 2022). [CrossRef]
- Anatriello, G.; Fiorenza, A.; Vincenzi, G. Banach function norms via Cauchy polynomials and applications. Internat. J. Math. 2015, 26, 1550083. [Google Scholar] [CrossRef]
- Matousova, I.; Trojovsky, P. On coding by (2, q)-distance fibonacci numbers. Mathematics 2020, 8, 2058. [Google Scholar] [CrossRef]
- Everest, G.; Poorten, A.V.; Shparlinski, I.; Ward, T. Recurrence sequences. In Mathematical Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 2003; Volume 104. [Google Scholar]
- Chasnov, J.R. Fibonacci Numbers and the Golden Ratio. 2016. Available online: https://www.math.hkust.edu.hk/~machas/fibonacci.pdf (accessed on 12 June 2022).
- Tanackov, I.; Kovačević, I.; Tepić, J. Formula for Fibonacci Sequence with Arbitrary Initial Numbers. Chaos Solitons Fractals 2015, 73, 115–119. [Google Scholar] [CrossRef]
- Bacani, J.B.; Rabago, J.F.T. On generalized Fibonacci numbers. Appl. Math. Sci. 2015, 9, 3611–3622. [Google Scholar] [CrossRef] [Green Version]
- Bagdasar, O.; Hedderwick, E. On the ratios and geometric boundaries of complex horadam sequences. Electr. Notes Discr. Math. 2018, 67, 63–70. [Google Scholar] [CrossRef]
- Crasta, G.; Malusa, A. Elementi di Analisi Matematica e Geometria con Prerequisiti ed Esercizi Svolti, 2nd ed.; Edizioni LaDotta: Bologna, Italy, 2017. [Google Scholar]
- Pagani, C.D.; Salsa, S. Analisi Matematica 1, 1st ed.; Zanichelli: Bologna, Italy, 2015. [Google Scholar]
- Marcellini, P.; Sbordone, C. Calcolo, 2nd ed.; Liguori Editore: Napoli, Italy, 2002. [Google Scholar]
- Hunter, J.K.; Nachtergaele, B. Applied Analysis; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 2001. [Google Scholar]
- Belding, D.F.; Mitchell, K.J. Foundations of Analysis; Dover Publications, Inc.: Mineola, NY, USA, 2008. [Google Scholar]
- Barcz, E. Application of Banach contraction principle to approximate the golden number. Ann. Univ. Paedagog. Cracoviensis Stud. Didact. Math. Pertin. 2020, 12, 31–38. [Google Scholar] [CrossRef]
- Barcz, E. A new proof and consequences of the fixed-point theorem of Matkowski. Ann. Math. Sil. 2021, 35, 149–157. [Google Scholar] [CrossRef]
- Barcz, E. On the golden number and fibonacci type sequences. Ann. Univ. Paedagog. Cracoviensis Stud. Didact. Math. Pertin. 2019, 11, 25–35. [Google Scholar] [CrossRef]
- Hunter, J.K. An Introduction to Real Analysis. 2014. Available online: https://www.math.ucdavis.edu/~hunter/intro_analysis_pdf/intro_analysis.pdf (accessed on 12 June 2022).
- Rudin, W. Principles of Mathematical Analysis, 3rd ed.; International Series in Pure and Applied Mathematics; McGraw-Hill Book Co.: New York, NY, USA, 1976. [Google Scholar]
- Campanato, S. Lezioni di Analisi Matematica, 1a Parte, 3rd ed.; Libreria Scientifica Giordano Pellegrini: Pisa, Italy, 1977. [Google Scholar]
- Fiorenza, R.; Greco, D. Lezioni di Analisi Matematica, Vol. Primo, 3rd ed.; Liguori Editore: Napoli, Italy, 1995. [Google Scholar]
- Campanato, S. Esercizi e Complementi di Analisi Matematica, 1a Parte, 2nd ed.; Libreria Scientifica Giordano Pellegrini: Pisa, Italy, 1975. [Google Scholar]
- Giusti, E. Esercizi e Complementi di Analisi Matematica, Vol. Primo, 1st ed.; Programma di Matematica, Fisica, Elettronica; [Program of Mathematics, Physics, Electronics]; Bollati Boringhieri: Turin, Italy, 1991. [Google Scholar]
- Wikipedia. Available online: https://en.wikipedia.org/wiki/Limit_inferior_and_limit_superior (accessed on 12 June 2022).
- Kalantari, B. On the order of convergence of a determinantal family of root-finding methods. BIT 1999, 39, 96–109. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, H. On the reciprocal sums of higher-order sequences. Adv. Differ. Equ. 2013, 2013, 189. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorenza, R. Existence of the Limit of Ratios of Consecutive Terms for a Class of Linear Recurrences. Mathematics 2022, 10, 2065. https://doi.org/10.3390/math10122065
Fiorenza R. Existence of the Limit of Ratios of Consecutive Terms for a Class of Linear Recurrences. Mathematics. 2022; 10(12):2065. https://doi.org/10.3390/math10122065
Chicago/Turabian StyleFiorenza, Renato. 2022. "Existence of the Limit of Ratios of Consecutive Terms for a Class of Linear Recurrences" Mathematics 10, no. 12: 2065. https://doi.org/10.3390/math10122065
APA StyleFiorenza, R. (2022). Existence of the Limit of Ratios of Consecutive Terms for a Class of Linear Recurrences. Mathematics, 10(12), 2065. https://doi.org/10.3390/math10122065