Sequential Fractional Hybrid Inclusions: A Theoretical Study via Dhage’s Technique and Special Contractions
Abstract
:1. Introduction
2. Preliminaries
- (1S)
- is Lipschitz with ;
- (2S)
- has the upper semi-continuity and the compactness properties;
- (3S)
- , provided that .
3. Main Results
- (E1)
- ;
- (E2)
- ;
- (E3)
- .
- (HPS1)
- There exists a bounded positive-valued mapping so that for each member and , we have
- (HPS2)
- is supposed to be -Caratheodory;
- (HPS3)
- There is a positive function such that for any and for almost all , we have
- (HPS4)
- There is a number provided that
- (HPS5)
- An integrable operator is bounded, and also, is a measurable set for every ;
- (HPS6)
- (HPS7)
- exists so that for each ;
- (HPS8)
- Let go to ϖ and for any . Then, a subsequence of exists such that for any and ;
- (HPS9)
- There exist two elements and such that for all , in which is the same operator illustrated by (15);
- (HPS10)
- For every and along with , there exists provided that for each .
- (HPS11)
- is a nondecreasing map having the upper semi-continuity property via and for all ;
- (HPS12)
- is bounded integrable so that is measurable for every ;
- (HPS13)
- (HPS14)
- is an operator having the APPX-endpoint property, where is formulated by (15).
4. Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FBVP | Fractional Boundary Value Problem |
References
- Adjabi, Y.; Samei, M.E.; Matar, M.M.; Alzabut, J. Langevin differential equation in frame of ordinary and Hadamard fractional derivatives under three point boundary conditions. AIMS Math. 2021, 6, 2796–2843. [Google Scholar] [CrossRef]
- Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad, S. A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 2021, 144, 110668. [Google Scholar] [CrossRef]
- Thabet, S.T.M.; Abdo, M.S.; Shah, K.; Abdeljawad, T. Abdeljawad, Study of transmission dynamics of COVID-19 mathematical model under ABC fractional order derivative. Res. Phys. 2020, 19, 103507. [Google Scholar]
- Thabet, S.T.M.; Etemad, S.; Rezapour, S. On a new structure of the pantograph inclusion problem in the Caputo conformable setting. Bound. Value Probl. 2020, 2020, 171. [Google Scholar] [CrossRef]
- Abbas, M.I.; Ragusa, M.A. Solvability of Langevin equations with two Hadamard fractional derivatives via Mittag-Leffler functions. Appl. Anal. 2022, 101, 3231–3245. [Google Scholar] [CrossRef]
- Abdo, M.S.; Shah, K.; Wahash, H.A.; Panchal, S.K. On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative. Chaos Solitons Fractal 2020, 135, 109867. [Google Scholar] [CrossRef]
- Amara, A.; Etemad, S.; Rezapour, S. Topological degree theory and Caputo–Hadamard fractional boundary value problems. Adv. Differ. Equ. 2020, 2020, 369. [Google Scholar] [CrossRef]
- Boucenna, D.; Boulfoul, A.; Chidouh, A.; Makhlouf, A.B.; Tellab, B. Some results for initial value problem of nonlinear fractional equation in Sobolev space. J. Appl. Math. Comput. 2021, 67, 605–621. [Google Scholar] [CrossRef]
- Derbazi, C.; Baitiche, Z.; Abdo, M.S.; Abdeljawad, T. Qualitative analysis of fractional relaxation equation and coupled system with Ψ-Caputo fractional derivative in Banach spaces. AIMS Math. 2020, 6, 2486–2509. [Google Scholar] [CrossRef]
- Ntouyas, S.K.; Etemad, S. On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions. Appl. Math. Comput. 2015, 266, 235–243. [Google Scholar] [CrossRef]
- Kamenskii, M.; Petrosyan, G.; Wen, C.F. An existence result for a periodic boundary value problem of fractional semilinear differential equations in a Banach space. J. Nonlinear Var. Anal. 2021, 5, 155–177. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley-Interscience, John-Wiley and Sons: New York, NY, USA, 1993. [Google Scholar]
- Alsaedi, A.; Ntouyas, S.K.; Agarwal, R.P.; Ahmad, B. On Caputo type sequential fractional differential equations with nonlocal integral boundary conditions. Adv. Differ. Equations 2015, 2015, 33. [Google Scholar] [CrossRef] [Green Version]
- Klimek, M. Sequential fractional differential equations with Hadamard derivative. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4689–4697. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Pourrazi, S.; Rezapour, S. On the new fractional hybrid boundary value problems with three-point integral hybrid conditions. Adv. Differ. Equations 2019, 2019, 473. [Google Scholar] [CrossRef]
- Hilal, K.; Kajouni, A. Boundary value problems for hybrid differential equations with fractional order. Adv. Differ. Equations 2015, 2015, 183. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, H.; Rezapour, S.; Etemad, S.; Baleanu, D. Two sequential fractional hybrid differential inclusions. Adv. Differ. Equations 2020, 2020, 385. [Google Scholar] [CrossRef]
- Sun, S.; Zhao, Y.; Han, Z.; Li, Y. The existence of solutions for boundary value problem of fractional hybrid differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4961–4967. [Google Scholar] [CrossRef]
- Sutar, S.T.; Kucche, K.D. On nonlinear hybrid fractional differential equations with Atangana-Baleanu-Caputo derivative. Chaos Solitons Fractals 2021, 143, 110557. [Google Scholar] [CrossRef]
- Dhage, B.C. Existence and attractivity theorems for nonlinear hybrid fractional integrodifferential equations with anticipation and retardation. J. Nonlinear Funct. Anal. 2020, 2020, 47. [Google Scholar] [CrossRef]
- Dhage, B.C.; Lakshmikantham, V. Basic results on hybrid differential equation. Nonlinear Anal. Hybrid Syst. 2010, 4, 414–424. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, S.; Han, Z.; Li, Q. Theory of fractional hybrid differential equations. Comput. Math. Appl. 2011, 62, 1312–1324. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Ntouyas, S.K.; Tariboon, J. On hybrid Caputo fractional integro-differential inclusions with nonlocal conditions. J. Nonlinear Sci. Appl. 2016, 9, 4235–4246. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Etemad, S.; Rezapour, S. A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 2020, 64. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.I.; Ragusa, M.A. On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function. Symmetry 2021, 13, 264. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Samko, G.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Longhorne, PA, USA, 1993. [Google Scholar]
- Deimling, K. Multi-Valued Differential Equations; Walter de Gruyter: Berlin, Germany, 1992. [Google Scholar]
- Aubin, J.; Cellna, A. Differential Inclusions: Set-Valued Maps and Viability Theory; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, B.; Rezapour, S.; Shahzad, N. Some results on fixed points of α-ψ-Ciric generalized multifunctions. Fixed Point Theory Appl. 2013, 2013, 24. [Google Scholar] [CrossRef] [Green Version]
- Amini-Harandi, A. Endpoints of set-valued contractions in metric spaces. Nonlinear Anal. 2010, 72, 132–134. [Google Scholar] [CrossRef]
- Lasota, A.; Opial, Z. An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci. Set. Sci. Math. Astronom. Phy. 1965, 13, 781–786. [Google Scholar]
- Dhage, B.C. Existence results for neutral functional differential inclusions in Banach algebras. Nonlinear Anal. 2006, 64, 1290–1306. [Google Scholar] [CrossRef]
2 | 889,292.91961 | 1.3313 | 0.011347 |
2.05 | 865,898.41669 | 1.2958 | 0.011049 |
2.10 | 841,868.56165 | 1.2595 | 0.010742 |
2.15 | 817,328.27460 | 1.2224 | 0.010429 |
2.20 | 792,395.79444 | 1.1847 | 0.010111 |
2.25 | 767,182.51010 | 1.1467 | 0.0097892 |
2.30 | 741,792.85850 | 1.1083 | 0.0094653 |
2.34 | 721,419.86984 | 1.0776 | 0.0092053 |
2.35 | 716,324.28332 | 1.0699 | 0.0091403 |
2.40 | 690,867.24816 | 1.0316 | 0.0088155 |
2.45 | 665,505.29858 | 0.99338 | 0.0084918 |
2.50 | 640,315.16705 | 0.95547 | 0.0081704 |
2.55 | 615,366.91563 | 0.91795 | 0.0078521 |
2.60 | 590,724.11123 | 0.88091 | 0.0075376 |
2.65 | 566,444.02851 | 0.84444 | 0.0072278 |
2.70 | 542,577.87603 | 0.80861 | 0.0069233 |
2.75 | 519,171.04139 | 0.77350 | 0.0066246 |
2.80 | 496,263.35146 | 0.73915 | 0.0063323 |
2.85 | 473,889.34410 | 0.70562 | 0.0060468 |
2.90 | 452,078.54815 | 0.67296 | 0.0057685 |
2.95 | 430,855.76866 | 0.64119 | 0.0054977 |
2.99 | 414,314.74663 | 0.61644 | 0.0052867 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Etemad, S.; Ntouyas, S.K.; Ahmad, B.; Rezapour, S.; Tariboon, J. Sequential Fractional Hybrid Inclusions: A Theoretical Study via Dhage’s Technique and Special Contractions. Mathematics 2022, 10, 2090. https://doi.org/10.3390/math10122090
Etemad S, Ntouyas SK, Ahmad B, Rezapour S, Tariboon J. Sequential Fractional Hybrid Inclusions: A Theoretical Study via Dhage’s Technique and Special Contractions. Mathematics. 2022; 10(12):2090. https://doi.org/10.3390/math10122090
Chicago/Turabian StyleEtemad, Sina, Sotiris K. Ntouyas, Bashir Ahmad, Shahram Rezapour, and Jessada Tariboon. 2022. "Sequential Fractional Hybrid Inclusions: A Theoretical Study via Dhage’s Technique and Special Contractions" Mathematics 10, no. 12: 2090. https://doi.org/10.3390/math10122090
APA StyleEtemad, S., Ntouyas, S. K., Ahmad, B., Rezapour, S., & Tariboon, J. (2022). Sequential Fractional Hybrid Inclusions: A Theoretical Study via Dhage’s Technique and Special Contractions. Mathematics, 10(12), 2090. https://doi.org/10.3390/math10122090