A Hybrid Intuitionistic Fuzzy Group Decision Framework and Its Application in Urban Rail Transit System Selection
Abstract
:1. Introduction
- (1)
- The selection of an urban rail transit system plays an important role in the sustainable development of the city, but now there is no unified standard for the selection of an urban rail transit system, and the construction of urban rail transit involves many aspects. Therefore, it is necessary to determine the corresponding evaluation criteria to select the appropriate type of urban rail transit system.
- (2)
- In the MCGDM problem, the weight of the criterion is a very important part. In the existing decision-making models, most studies only consider the subjective or objective weight model, and the criterion weight determination method is single, which is difficult to comprehensively consider the subjective and objective importance of the criterion so as to affect the final decision-making results. Therefore, it is necessary to establish the comprehensive weight of a criterion determination model considering the subjective and objective influence to obtain more reasonable and credible decision-making results.
- (3)
- Through literature analysis, it is found that the intuitionistic fuzzy group decision methods in the existing research rarely consider the interaction between criteria in the decision-making process, and most decision-making methods determine the optimal alternatives based on the traditional utility theory, ignoring the psychological behavior of experts in the decision process.
- (1)
- Determine evaluation criteria of an urban rail transit system. In order to solve the problem that the existing urban rail transit system selection lacks unified standards, this study establishes the urban rail transit system selection evaluation criteria from four aspects: characteristics, technology, economy and environment.
- (2)
- Build a comprehensive weight determination model of criteria. In order to determine the criterion weight more reasonably, based on the intuitionistic fuzzy environment, the objective weight and subjective weight of the criterion are calculated, respectively, according to DEMATEL and CRITIC, and then the comprehensive weight of the criterion is calculated by the linear integration method and a new comprehensive weight determination model of the criterion is built.
- (3)
- Develop a hybrid intuitionistic fuzzy group decision framework. Based on the proposed intuitionistic fuzzy distance measurement method, the comprehensive weight of the criterion determination model and COPRAS method combined with regret theory, a hybrid group-decision-making framework for urban rail transit system selection is established. Meanwhile, taking city N as an example, the effectiveness and rationality of the method framework proposed in this study are verified.
2. Preliminaries
2.1. Intuitionistic Fuzzy Sets
- (1)
- ;
- (2)
- ;
- (3)
- ;
- (4)
- ;
- (5)
- ;
- (6)
- .
- (1)
- If , thenis better than, written as .
- (2)
- If , then
- (i)
- If , thenis better than, written as;
- (ii)
- If , thenis equal to, written as .
2.2. Regret Theory
3. A Hybrid Intuitionistic Fuzzy Group Decision Framework
3.1. A Novel Intuitionistic Fuzzy Distance Measure
- (1)
- ;
- (2)
- if and only if ;
- (3)
- ’
- (4)
- If , then , .
3.2. Problem Statement
3.3. Detailed Steps of the Hybrid Intuitionistic Fuzzy Group Decision Framework
- (1)
- Stage 1 Collect the evaluation information
- (2)
- Stage 2 Determine the comprehensive evaluation matrix
- (3)
- Stage 3 Obtain the comprehensive weight of criteria
- (4)
- Stage 4 Determine the ranking of urban rail transit systems
4. Case Study
4.1. The Types of Urban Rail Transit System
- (1)
- Metro System (P1). A metro system is a kind of urban rail transit. It adopts a steel wheel and rail system and mainly operates in tunnels built in underground space of big cities. When conditions permit, it can also pass through the ground and operate on the ground or viaduct.
- (2)
- Light Rail System (P2). A light rail system refers to the tram or train running on all streets or viaducts. It is a kind of urban rail transit system.
- (3)
- Monorail System (P3). A monorail system is a medium-volume rail transportation system in which vehicles and special track beams are combined into one. Its track beam is not only the load-bearing structure of vehicles but also the guide track for vehicle operation.
- (4)
- Modern Tram System (P4). A tram is a rail transit vehicle driven by electricity and running on the track. Because it runs on the street, it is also called road tram, or tram for short.
- (5)
- Mid–Low-Speed Maglev System (P5). A medium–low-speed maglev is a new technology with independent intellectual property rights in China, and it is also the most advanced technology in urban rail transit. It is applicable to the traffic connection between urban areas, close cities and scenic spots.
- (6)
- Automatic Guided Track System (P6). Automatic guided track system trains run along special guiding devices. The vehicle operation and stations can be controlled by computer. It can realize full automation and unmanned driving. The automatic guided track system is suitable for urban airport lines and point-to-point transportation lines with relatively concentrated urban passenger flow. When necessary, it can operate with fewer stops in the middle.
- (7)
- Municipal Railway System (P7). A municipal railway, also known as commuter railway and suburban railway, refers to the passenger rail transit system within the metropolitan area, serving cities and suburbs, central cities and satellite cities, key cities and towns, etc.
4.2. Relevant Criteria
4.3. Method Implementation
4.4. Sensitivity Analysis
4.4.1. The Impact Analysis of Parameter on Decision Results
4.4.2. The Impact Analysis of Parameter on Decision Results
4.5. Comparative Analysis
- (1)
- The proposed framework describes the uncertainty and fuzziness in the decision-making process through IFS, which makes the decision-making results closer to the uncertain cognitive thinking of decision-makers.
- (2)
- The proposed framework can effectively solve the decision problem with completely unknown weight information, so it has a wider scope of application.
- (3)
- The proposed framework determines the model through the comprehensive weight, and reasonably considers the subjective and objective factors to make the importance of the criterion more credible.
- (4)
- The proposed framework combines regret theory and the COPRAS method and comprehensively considers the inconsistency of psychological behavior and the attribute transformation process in the process of expert decision-making, so it improves the rationality and reliability of decision outcomes.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Decision-Making Trial and Evaluation Laboratory | DEMATEL |
Criteria Importance Through Inter-criteria Correlation | CRITIC |
Complex Proportional Assessment | COPRAS |
Intuitionistic Fuzzy Sets | IFS |
VlseKriterijuska Optimizacija I Komoromisno Resenje | VIKOR |
Technique for Order Preference by Similarity to an Ideal Solution | TOPSIS |
Multi-Criteria Group-Decision-Making | MCGDM |
Multi-Criteria Decision-Making | MCDM |
Multi-Attribute Border Approximation Area Comparison | MABAC |
Intuitionistic Fuzzy Number | IFN |
Additional Ratio Assessment | ARAS |
References
- Cao, J.; Chen, X.; Qiu, R.; Hou, S. Electric vehicle industry sustainable development with a stakeholder engagement system. Technol. Soc. 2021, 67, 101771. [Google Scholar] [CrossRef]
- Thondoo, M.; Marquet, O.; Marquez, S.; Nieuwenhuijsen, M.J. Small cities, big needs: Urban transport planning in cities of developing countries. J. Transp. Health 2020, 19, 100944. [Google Scholar] [CrossRef]
- Huang, X.; Cao, X.J.; Cao, X.; Yin, J. How does the propensity of living near rail transit moderate the influence of rail transit on transit trip frequency in Xi’an? J. Transp. Geogr. 2016, 54, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Das, S.; Guha, D.; Mesiar, R. Information measures in the intuitionistic fuzzy framework and their relationships. IEEE Trans. Fuzzy Syst. 2017, 26, 1626–1637. [Google Scholar] [CrossRef]
- Mishra, A.R.; Rani, P. Information measures based TOPSIS method for multicriteria decision making problem in intuitionistic fuzzy environment. Iran. J. Fuzzy Syst. 2017, 14, 41–63. [Google Scholar]
- Ecer, F.; Pamucar, D. MARCOS technique under intuitionistic fuzzy environment for determining the COVID-19 pandemic performance of insurance companies in terms of healthcare services. Appl. Soft Comput. 2021, 104, 107199. [Google Scholar] [CrossRef]
- Schitea, D.; Deveci, M.; Iordache, M.; Bilgili, K.; Akyurt, İ.Z.; Iordache, I. Hydrogen mobility roll-up site selection using intuitionistic fuzzy sets based WASPAS, COPRAS and EDAS. Int. J. Hydrogen Energy 2019, 44, 8585–8600. [Google Scholar] [CrossRef]
- Mishra, A.R.; Mardani, A.; Rani, P.; Kamyab, H.; Alrasheedi, M. A new intuitionistic fuzzy combinative distance-based assessment framework to assess low-carbon sustainable suppliers in the maritime sector. Energy 2021, 237, 121500. [Google Scholar] [CrossRef]
- Zhang, C.; Liao, H.; Luo, L.; Xu, Z. Distance-based consensus reaching process for group decision making with intuitionistic multiplicative preference relations. Appl. Soft Comput. 2020, 88, 106045. [Google Scholar] [CrossRef]
- Meng, F.; Chen, S.M.; Yuan, R. Group decision making with heterogeneous intuitionistic fuzzy preference relations. Inf. Sci. 2020, 523, 197–219. [Google Scholar] [CrossRef]
- Gabus, A.; Fontela, E. World Problems, an Invitation to Further Thought within the Framework of DEMATEL; Battelle Geneva Research Center: Geneva, Switzerland, 1972; pp. 1–8. [Google Scholar]
- Topgul, M.H.; Kilic, H.S.; Tuzkaya, G. Greenness assessment of supply chains via intuitionistic fuzzy based approaches. Adv. Eng. Inform. 2021, 50, 101377. [Google Scholar] [CrossRef]
- Roostaie, S.; Nawari, N. The DEMATEL approach for integrating resilience indicators into building sustainability assessment frameworks. Build. Environ. 2022, 207, 108113. [Google Scholar] [CrossRef]
- Tseng, M.L.; Ardaniah, V.; Sujanto, R.Y.; Fujii, M.; Lim, M.K. Multicriteria assessment of renewable energy sources under uncertainty: Barriers to adoption. Technol. Forecast. Soc. Change 2021, 171, 120937. [Google Scholar] [CrossRef]
- Liu, Y.; Wood, L.C.; Venkatesh, V.G.; Zhang, A.; Farooque, M. Barriers to sustainable food consumption and production in China: A fuzzy DEMATEL analysis from a circular economy perspective. Sustain. Prod. Consum. 2021, 28, 1114–1129. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Paydar, M.M.; Hajiaghaei-Keshteli, M. Recovery solutions for ecotourism centers during the COVID-19 pandemic: Utilizing Fuzzy DEMATEL and Fuzzy VIKOR methods. Expert Syst. Appl. 2021, 185, 115594. [Google Scholar] [CrossRef]
- Li, H.; Wang, W.; Fan, L.; Li, Q.; Chen, X. A novel hybrid MCDM model for machine tool selection using fuzzy DEMATEL, entropy weighting and later defuzzification VIKOR. Appl. Soft Comput. 2020, 91, 106207. [Google Scholar] [CrossRef]
- Fang, S.; Zhou, P.; Dinçer, H.; Yüksel, S. Assessment of safety management system on energy investment risk using house of quality based on hybrid stochastic interval-valued intuitionistic fuzzy decision-making approach. Saf. Sci. 2021, 141, 105333. [Google Scholar] [CrossRef]
- Liang, W.; Wang, Y.M. A probabilistic interval-valued hesitant fuzzy gained and lost dominance score method based on regret theory. Comput. Ind. Eng. 2021, 159, 107532. [Google Scholar] [CrossRef]
- Loomes, G.; Sugden, R. Regret theory: An alternative theory of rational choice under uncertainty. Econ. J. 1982, 92, 805–824. [Google Scholar] [CrossRef]
- Bell, D.E. Regret in decision making under uncertainty. Oper. Res. 1982, 30, 961–981. [Google Scholar] [CrossRef]
- Tian, X.; Xu, Z.; Gu, J.; Herrera, F. A consensus process based on regret theory with probabilistic linguistic term sets and its application in venture capital. Inf. Sci. 2021, 562, 347–369. [Google Scholar] [CrossRef]
- Huang, L.; Mao, L.X.; Chen, Y.; Liu, H.C. New method for emergency decision making with an integrated regret theory-EDAS method in 2-tuple spherical linguistic environment. Appl. Intell. 2022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wang, Y.M.; Zheng, J. Regret Theory-Based Case-Retrieval Method with Multiple Heterogeneous Attributes and Incomplete Weight Information. Int. J. Comput. Intell. Syst. 2021, 14, 1022–1033. [Google Scholar] [CrossRef]
- Liu, P.; Cheng, S. An improved MABAC group decision-making method using regret theory and likelihood in probability multi-valued neutrosophic sets. Int. J. Inf. Technol. Decis. Mak. 2020, 19, 1353–1387. [Google Scholar]
- Huang, X.; Zhan, J. TWD-R: A three-way decision approach based on regret theory in multi-scale decision information systems. Inf. Sci. 2021, 581, 711–739. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, D.; Wang, W.; Liu, P. An integrated group decision—Making framework for selecting cloud service providers based on regret theory and EVAMIX with hybrid information. Int. J. Intell. Syst. 2021, 37, 3480–3513. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Kaklauskas, A.; Sarka, V. The new method of multicriteria complex proportional assessment of projects. Technol. Econ. Dev. Econ. 1994, 1, 131–139. [Google Scholar]
- Organ, A.; Yalçın, E. Performance evaluation of research assistants by COPRAS method. Eur. Sci. J. 2016, 12, 102–109. [Google Scholar]
- Buyukozkan, G.; Gocer, F. A novel approach integrating AHP and COPRAS under pythagorean fuzzy sets for digital supply chain partner selection. IEEE Trans. Eng. Manag. 2019, 68, 1486–1503. [Google Scholar] [CrossRef]
- Balali, A.; Valipour, A.; Edwards, R.; Moehler, R. Ranking effective risks on human resources threats in natural gas supply projects using ANP-COPRAS method: Case study of Shiraz. Reliab. Eng. Syst. Saf. 2021, 208, 107442. [Google Scholar] [CrossRef]
- Mishra, A.R.; Rani, P.; Pandey, K.; Mardani, A.; Streimikis, J.; Streimikiene, D.; Alrasheedi, M. Novel multi-criteria intuitionistic fuzzy SWARA–COPRAS approach for sustainability evaluation of the bioenergy production process. Sustainability 2020, 12, 4155. [Google Scholar]
- Alipour, M.; Hafezi, R.; Rani, P.; Hafezi, M.; Mardani, A. A new Pythagorean fuzzy-based decision-making method through entropy measure for fuel cell and hydrogen components supplier selection. Energy 2021, 234, 121208. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, Z.; Zhang, Y. The DEMATEL–COPRAS hybrid method under probabilistic linguistic environment and its application in Third Party Logistics provider selection. Fuzzy Optim. Decis. Mak. 2022, 21, 137–156. [Google Scholar] [CrossRef]
- Narayanamoorthy, S.; Ramya, L.; Kalaiselvan, S.; Kureethara, J.V.; Kang, D. Use of DEMATEL and COPRAS method to select best alternative fuel for control of impact of greenhouse gas emissions. Socio-Econ. Plan. Sci. 2021, 76, 100996. [Google Scholar] [CrossRef]
- Zeng, S.; Chen, S.M.; Kuo, L.W. Multiattribute decision making based on novel score function of intuitionistic fuzzy values and modified VIKOR method. Inf. Sci. 2019, 488, 76–92. [Google Scholar] [CrossRef]
- Xu, Z. Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 2007, 15, 1179–1187. [Google Scholar]
- Zhang, S.; Zhu, J.; Liu, X.; Chen, Y. Regret theory-based group decision-making with multidimensional preference and incomplete weight information. Inf. Fusion 2016, 31, 1–13. [Google Scholar] [CrossRef]
- Yurdakul, M.; İç, Y.T.; Atalay, K.D. Development of an intuitionistic fuzzy ranking model for nontraditional machining processes. Soft Comput. 2020, 24, 10095–10110. [Google Scholar] [CrossRef]
- Quiggin, J. Regret theory with general choice sets. J. Risk Uncertain. 1994, 8, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.J.; Goh, M.; Zou, Y. Logistics provider selection for omni-channel environment with fuzzy axiomatic design and extended regret theory. Appl. Soft Comput. 2018, 71, 353–363. [Google Scholar] [CrossRef]
- Rong, Y.; Liu, Y.; Pei, Z. Complex q-rung orthopair fuzzy 2-tuple linguistic Maclaurin symmetric mean operators and its application to emergency program selection. Int. J. Intell. Syst. 2020, 35, 1749–1790. [Google Scholar] [CrossRef]
- Rong, Y.; Liu, Y.; Pei, Z. A novel multiple attribute decision-making approach for evaluation of emergency man-agement schemes under picture fuzzy environment. Int. J. Mach. Learn. Cybern. 2021, 13, 633–661. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, Y.; Huang, J.; Wei, J.; Herrera-Viedma, E. Social network clustering and consensus-based distrust be-haviors management for large-scale group decision-making with incomplete hesitant fuzzy preference relations. Appl. Soft Comput. 2022, 117, 108373. [Google Scholar] [CrossRef]
- Rodríguez, R.M.; Labella, Á.; Nunez-Cacho, P.; Molina-Moreno, V.; Martínez, L. A comprehensive minimum cost consensus model for large scale group decision making for circular economy measurement. Technol. Forecast. Soc. Change 2022, 175, 121391. [Google Scholar] [CrossRef]
- Wan, S.P.; Yan, J.; Dong, J.Y. Personalized individual semantics based consensus reaching process for large-scale group decision making with probabilistic linguistic preference relations and application to COVID-19 surveillance. Expert Syst. Appl. 2022, 191, 116328. [Google Scholar] [CrossRef]
Linguistic Variables | IFNs |
---|---|
Extremely Low (EL) | (0.10, 0.90, 0.00) |
Very Low (VL) | (0.10, 0.75, 0.15) |
Low (L) | (0.25, 0.60, 0.15) |
Medium Low (ML) | (0.40, 0.50, 0.10) |
Medium (M) | (0.50, 0.40, 0.10) |
Medium High (MH) | (0.60, 0.30, 0.10) |
High (H) | (0.70, 0.20, 0.10) |
Very High (VH) | (0.80, 0.10, 0.10) |
Extremely High (EH) | (0.90, 0.10, 0.00) |
Experts | Major | Occupation | Working Experience |
---|---|---|---|
D1 | Transportation | Professor | 26 years |
D2 | Transportation | Professor | 22 years |
D3 | Transportation | Associate professor | 15 years |
D4 | Transportation | Researcher | 8 years |
Primary Index | Secondary Index | Type | Description |
---|---|---|---|
Characteristic | Transportation capacity (Q1) | Benefit | It refers to the average number of passengers transported by the rail transit system per hour. |
Transportation speed (Q2) | Benefit | It refers to the average operating distance of the rail transit system per hour. | |
Technology | Technology maturity (Q3) | Benefit | It refers to the maturity of the technology used in the construction of the rail transit system. |
Application degree of green technology (Q4) | Benefit | It refers to the degree of application of green technology in the design and construction stage of the rail transit system, such as land saving, energy saving, environmental protection technology, etc. | |
Construction difficulty (Q5) | Cost | It refers to the environmental conditions required for the construction of the rail transit system, such as underground, ground, soil requirements, etc. | |
Economy | Construction cost (Q6) | Cost | It refers to the average construction cost per kilometer of the rail transit system. |
Operation and maintenance cost (Q7) | Cost | It refers to the cost required for the operation and maintenance of the rail transit system after the completion of construction. | |
Environment | Environmental harmony (Q8) | Benefit | It refers to the influence degree of the noise generated during the operation of the rail transit system on the environment and the environmental quality and aesthetics of the internal environment (vehicles and stations). |
DEs | Urban Rail Transit System | Criteria | |||||||
---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | ||
D1 | P1 | EH | H | EH | H | VH | VH | VH | H |
P2 | H | H | EH | H | MH | MH | H | VH | |
P3 | M | MH | H | VH | L | ML | MH | VH | |
P4 | ML | ML | H | VH | ML | L | L | VH | |
P5 | M | VH | M | H | H | H | MH | H | |
P6 | M | MH | H | H | M | M | M | VH | |
P7 | H | EH | VH | H | M | H | H | VH | |
D2 | P1 | VH | VH | VH | MH | M | M | M | M |
P2 | H | H | VH | MH | M | M | M | M | |
P3 | M | M | H | MH | M | ML | M | MH | |
P4 | ML | ML | H | MH | M | ML | M | ML | |
P5 | M | EH | ML | H | H | H | H | H | |
P6 | ML | L | M | MH | M | ML | M | MH | |
P7 | VH | VH | VH | MH | M | MH | MH | M | |
D3 | P1 | VH | VH | VH | MH | M | EH | EH | H |
P2 | MH | MH | VH | MH | M | H | EH | H | |
P3 | ML | MH | MH | MH | ML | H | EH | EH | |
P4 | ML | ML | MH | ML | H | M | M | M | |
P5 | ML | MH | VL | VH | H | H | EH | H | |
P6 | VL | ML | VL | MH | ML | M | M | M | |
P7 | EH | EH | VH | MH | M | H | VH | H | |
D4 | P1 | VH | VH | H | M | H | VH | VH | MH |
P2 | MH | MH | H | M | M | MH | ML | H | |
P3 | MH | MH | ML | M | ML | M | M | H | |
P4 | M | M | ML | M | M | ML | ML | VH | |
P5 | H | H | L | MH | MH | H | VH | VH | |
P6 | M | M | L | M | MH | VH | VH | MH | |
P7 | VH | VH | VH | M | MH | M | M | M |
DEs | Criteria | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 |
---|---|---|---|---|---|---|---|---|---|
D1 | Q1 | EL | VL | VL | VL | ML | ML | H | ML |
Q2 | H | EL | VL | VL | MH | MH | H | H | |
Q3 | MH | MH | EL | M | VH | VH | VH | H | |
Q4 | VL | VL | VL | EL | MH | MH | H | EH | |
Q5 | VL | VL | VL | ML | EL | EH | L | L | |
Q6 | M | M | VL | VL | MH | EL | L | ML | |
Q7 | L | L | VL | VL | VL | VL | EL | VL | |
Q8 | VL | VL | VL | VL | VL | VL | VL | EL | |
D2 | Q1 | EL | MH | ML | MH | ML | ML | ML | MH |
Q2 | M | EL | ML | MH | ML | ML | ML | MH | |
Q3 | VH | VH | EL | H | H | M | M | MH | |
Q4 | L | L | ML | EL | ML | ML | ML | M | |
Q5 | M | H | L | ML | EL | M | ML | M | |
Q6 | L | L | H | M | H | EL | ML | ML | |
Q7 | ML | M | H | H | MH | M | EL | ML | |
Q8 | MH | MH | VH | EH | MH | H | VH | EL | |
D3 | Q1 | EL | MH | L | ML | ML | VH | VH | M |
Q2 | VH | EL | MH | ML | VH | MH | VH | M | |
Q3 | L | MH | EL | VH | H | M | MH | M | |
Q4 | L | ML | VH | EL | H | VH | VH | VH | |
Q5 | ML | VH | H | H | EL | VH | VH | VH | |
Q6 | VH | MH | M | VH | VH | EL | H | H | |
Q7 | VH | VH | MH | VH | H | H | EL | VH | |
Q8 | M | M | M | VH | H | H | VH | EL | |
D4 | Q1 | EL | EL | H | H | VH | VH | VH | M |
Q2 | EL | EL | VH | MH | VH | VH | VH | VH | |
Q3 | H | VH | EL | VH | VH | VH | VH | EH | |
Q4 | H | MH | VH | EL | M | VH | VH | EH | |
Q5 | VH | VH | VH | M | EL | EH | EH | EH | |
Q6 | VH | VH | VH | VH | EH | EL | M | M | |
Q7 | VH | VH | VH | VH | EH | M | EL | L | |
Q8 | M | VH | EH | EH | M | M | L | EL |
Linguistic Variables | IFNs |
---|---|
Extremely Low (EL) | (0.10, 0.80, 0.10) |
Very Low (VL) | (0.20, 0.70, 0.10) |
Low (L) | (0.30, 0.60, 0.10) |
Medium Low (ML) | (0.40, 0.50, 0.10) |
Medium (M) | (0.55, 0.40, 0.05) |
Medium High (MH) | (0.65, 0.30, 0.05) |
High (H) | (0.75, 0.20, 0.05) |
Very High (VH) | (0.90, 0.05, 0.05) |
Extremely High (EH) | (1.00, 0.00, 0.00) |
DEs. | Urban Rail Transit System | Criteria | |||||||
---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | ||
D1 | P1 | (0.90, 0.10, 0.00) | (0.70, 0.20, 0.10) | (0.90, 0.10, 0.00) | (0.70, 0.20, 0.10) | (0.80, 0.10, 0.10) | (0.80, 0.10, 0.10) | (0.80, 0.10, 0.10) | (0.70, 0.20, 0.10) |
P2 | (0.70, 0.20, 0.10) | (0.70, 0.20, 0.10) | (0.90, 0.10, 0.00) | (0.70, 0.20, 0.10) | (0.60, 0.30, 0.10) | (0.60, 0.30, 0.10) | (0.70, 0.20, 0.10) | (0.80, 0.10, 0.10) | |
P3 | (0.50, 0.40, 0.10) | (0.60, 0.30, 0.10) | (0.70, 0.20, 0.10) | (0.80, 0.10, 0.10) | (0.25, 0.60, 0.15) | (0.40, 0.50, 0.10) | (0.60, 0.30, 0.10) | (0.80, 0.10, 0.10) | |
P4 | (0.40, 0.50, 0.10) | (0.40, 0.50, 0.10) | (0.70, 0.20, 0.10) | (0.80, 0.10, 0.10) | (0.40, 0.50, 0.10) | (0.25, 0.60, 0.15) | (0.25, 0.60, 0.15) | (0.80, 0.10, 0.10) | |
P5 | (0.50, 0.40, 0.10) | (0.80, 0.10, 0.10) | (0.50, 0.40, 0.10) | (0.70, 0.20, 0.10) | (0.70, 0.20, 0.10) | (0.70, 0.20, 0.10) | (0.60, 0.30, 0.10) | (0.70, 0.20, 0.10) | |
P6 | (0.50, 0.40, 0.10) | (0.60, 0.30, 0.10) | (0.70, 0.20, 0.10) | (0.70, 0.20, 0.10) | (0.50, 0.40, 0.10) | (0.50, 0.40, 0.10) | (0.50, 0.40, 0.10) | (0.80, 0.10, 0.10) | |
P7 | (0.70, 0.20, 0.10) | (0.90, 0.10, 0.00) | (0.80, 0.10, 0.10) | (0.70, 0.20, 0.10) | (0.50, 0.40, 0.10) | (0.70, 0.20, 0.10) | (0.70, 0.20, 0.10) | (0.80, 0.10, 0.10) | |
D2 | P1 | (0.80, 0.10, 0.10) | (0.80, 0.10, 0.10) | (0.80, 0.10, 0.10) | (0.60, 0.30, 0.10) | (0.50, 0.40, 0.10) | (0.50, 0.40, 0.10) | (0.50, 0.40, 0.10) | (0.50, 0.40, 0.10) |
P2 | (0.70, 0.20, 0.10) | (0.70, 0.20, 0.10) | (0.80, 0.10, 0.10) | (0.60, 0.30, 0.10) | (0.50, 0.40, 0.10) | (0.50, 0.40, 0.10) | (0.50, 0.40, 0.10) | (0.50, 0.40, 0.10) | |
P3 | (0.50, 0.40, 0.10) | (0.50, 0.40, 0.10) | (0.70, 0.20, 0.10) | (0.60, 0.30, 0.10) | (0.50, 0.40, 0.10) | (0.40, 0.50, 0.10) | (0.50, 0.40, 0.10) | (0.60, 0.30, 0.10) | |
P4 | (0.40, 0.50, 0.10) | (0.40, 0.50, 0.10) | (0.70, 0.20, 0.10) | (0.60, 0.30, 0.10) | (0.50, 0.40, 0.10) | (0.40, 0.50, 0.10) | (0.50, 0.40, 0.10) | (0.40, 0.50, 0.10) | |
P5 | (0.50, 0.40, 0.10) | (0.90, 0.10, 0.00) | (0.40, 0.50, 0.10) | (0.70, 0.20, 0.10) | (0.70, 0.20, 0.10) | (0.70, 0.20, 0.10) | (0.70, 0.20, 0.10) | (0.70, 0.20, 0.10) | |
P6 | (0.40, 0.50, 0.10) | (0.25, 0.60, 0.15) | (0.50, 0.40, 0.10) | (0.60, 0.30, 0.10) | (0.50, 0.40, 0.10) | (0.40, 0.50, 0.10) | (0.50, 0.40, 0.10) | (0.60, 0.30, 0.10) | |
P7 | (0.80, 0.10, 0.10) | (0.80, 0.10, 0.10) | (0.80, 0.10, 0.10) | (0.60, 0.30, 0.10) | (0.50, 0.40, 0.10) | (0.60, 0.30, 0.10) | (0.60, 0.30, 0.10) | (0.50, 0.40, 0.10) | |
D3 | P1 | (0.80, 0.10, 0.10) | (0.80, 0.10, 0.10) | (0.80, 0.10, 0.10) | (0.60, 0.30, 0.10) | (0.50, 0.40, 0.10) | (0.90, 0.10, 0.00) | (0.90, 0.10, 0.00) | (0.70, 0.20, 0.10) |
P2 | (0.60, 0.30, 0.10) | (0.60, 0.30, 0.10) | (0.80, 0.10, 0.10) | (0.60, 0.30, 0.10) | (0.50, 0.40, 0.10) | (0.70, 0.20, 0.10) | (0.90, 0.10, 0.00) | (0.70, 0.20, 0.10) | |
P3 | (0.40, 0.50, 0.10) | (0.60, 0.30, 0.10) | (0.60, 0.30, 0.10) | (0.60, 0.30, 0.10) | (0.40, 0.50, 0.10) | (0.70, 0.20, 0.10) | (0.90, 0.10, 0.00) | (0.90, 0.10, 0.00) | |
P4 | (0.40, 0.50, 0.10) | (0.40, 0.50, 0.10) | (0.60, 0.30, 0.10) | (0.40, 0.50, 0.10) | (0.70, 0.20, 0.10) | (0.50, 0.40, 0.10) | (0.50, 0.40, 0.10) | (0.50, 0.40, 0.10) | |
P5 | (0.40, 0.50, 0.10) | (0.60, 0.30, 0.10) | (0.10, 0.75, 0.15) | (0.80, 0.10, 0.10) | (0.70, 0.20, 0.10) | (0.70, 0.20, 0.10) | (0.90, 0.10, 0.00) | (0.70, 0.20, 0.10) | |
P6 | (0.10, 0.75, 0.15) | (0.40, 0.50, 0.10) | (0.10, 0.75, 0.15) | (0.60, 0.30, 0.10) | (0.40, 0.50, 0.10) | (0.50, 0.40, 0.10) | (0.50, 0.40, 0.10) | (0.50, 0.40, 0.10) | |
P7 | (0.90, 0.10, 0.00) | (0.90, 0.10, 0.00) | (0.80, 0.10, 0.10) | (0.60, 0.30, 0.10) | (0.50, 0.40, 0.10) | (0.70, 0.20, 0.10) | (0.80, 0.10, 0.10) | (0.70, 0.20, 0.10) | |
D4 | P1 | (0.80, 0.10, 0.10) | (0.80, 0.10, 0.10) | (0.70, 0.20, 0.10) | (0.50, 0.40, 0.10) | (0.70, 0.20, 0.10) | (0.80, 0.10, 0.10) | (0.80, 0.10, 0.10) | (0.60, 0.30, 0.10) |
P2 | (0.60, 0.30, 0.10) | (0.60, 0.30, 0.10) | (0.70, 0.20, 0.10) | (0.50, 0.40, 0.10) | (0.50, 0.40, 0.10) | (0.60, 0.30, 0.10) | (0.40, 0.50, 0.10) | (0.70, 0.20, 0.10) | |
P3 | (0.60, 0.30, 0.10) | (0.60, 0.30, 0.10) | (0.40, 0.50, 0.10) | (0.50, 0.40, 0.10) | (0.40, 0.50, 0.10) | (0.50, 0.40, 0.10) | (0.50, 0.40, 0.10) | (0.70, 0.20, 0.10) | |
P4 | (0.50, 0.40, 0.10) | (0.50, 0.40, 0.10) | (0.40, 0.50, 0.10) | (0.50, 0.40, 0.10) | (0.50, 0.40, 0.10) | (0.40, 0.50, 0.10) | (0.40, 0.50, 0.10) | (0.80, 0.10, 0.10) | |
P5 | (0.70, 0.20, 0.10) | (0.70, 0.20, 0.10) | (0.25, 0.60, 0.15) | (0.60, 0.30, 0.10) | (0.60, 0.30, 0.10) | (0.70, 0.20, 0.10) | (0.80, 0.10, 0.10) | (0.80, 0.10, 0.10) | |
P6 | (0.50, 0.40, 0.10) | (0.50, 0.40, 0.10) | (0.25, 0.60, 0.15) | (0.50, 0.40, 0.10) | (0.60, 0.30, 0.10) | (0.80, 0.10, 0.10) | (0.80, 0.10, 0.10) | (0.60, 0.30, 0.10) | |
P7 | (0.80, 0.10, 0.10) | (0.80, 0.10, 0.10) | (0.80, 0.10, 0.10) | (0.50, 0.40, 0.10) | (0.60, 0.30, 0.10) | (0.50, 0.40, 0.10) | (0.50, 0.40, 0.10) | (0.50, 0.40, 0.10) |
DEs | Criteria | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 |
---|---|---|---|---|---|---|---|---|---|
D1 | Q1 | (0.10, 0.80, 0.10) | (0.20, 0.70, 0.10) | (0.20, 0.70, 0.10) | (0.20, 0.70, 0.10) | (0.40, 0.50, 0.10) | (0.40, 0.50, 0.10) | (0.75, 0.20, 0.05) | (0.40, 0.50, 0.10) |
Q2 | (0.75, 0.20, 0.05) | (0.10, 0.80, 0.10) | (0.20, 0.70, 0.10) | (0.20, 0.70, 0.10) | (0.65, 0.30, 0.05) | (0.65, 0.30, 0.05) | (0.75, 0.20, 0.05) | (0.75, 0.20, 0.05) | |
Q3 | (0.65, 0.30, 0.05) | (0.65, 0.30, 0.05) | (0.10, 0.80, 0.10) | (0.55, 0.40, 0.05) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (0.75, 0.20, 0.05) | |
Q4 | (0.20, 0.70, 0.10) | (0.20, 0.70, 0.10) | (0.20, 0.70, 0.10) | (0.10, 0.80, 0.10) | (0.65, 0.30, 0.05) | (0.65, 0.30, 0.05) | (0.75, 0.20, 0.05) | (1.00, 0.00, 0.00) | |
Q5 | (0.20, 0.70, 0.10) | (0.20, 0.70, 0.10) | (0.20, 0.70, 0.10) | (0.40, 0.50, 0.10) | (0.10, 0.80, 0.10) | (1.00, 0.00, 0.00) | (0.30, 0.60, 0.10) | (0.30, 0.60, 0.10) | |
Q6 | (0.55, 0.40, 0.05) | (0.55, 0.40, 0.05) | (0.20, 0.70, 0.10) | (0.20, 0.70, 0.10) | (0.65, 0.30, 0.05) | (0.10, 0.80, 0.10) | (0.30, 0.60, 0.10) | (0.40, 0.50, 0.10) | |
Q7 | (0.30, 0.60, 0.10) | (0.30, 0.60, 0.10) | (0.20, 0.70, 0.10) | (0.20, 0.70, 0.10) | (0.20, 0.70, 0.10) | (0.20, 0.70, 0.10) | (0.10, 0.80, 0.10) | (0.20, 0.70, 0.10) | |
Q8 | (0.20, 0.70, 0.10) | (0.20, 0.70, 0.10) | (0.20, 0.70, 0.10) | (0.20, 0.70, 0.10) | (0.20, 0.70, 0.10) | (0.20, 0.70, 0.10) | (0.20, 0.70, 0.10) | (0.10, 0.80, 0.10) | |
D2 | Q1 | (0.10, 0.80, 0.10) | (0.65, 0.30, 0.05) | (0.40, 0.50, 0.10) | (0.65, 0.30, 0.05) | (0.40, 0.50, 0.10) | (0.40, 0.50, 0.10) | (0.40, 0.50, 0.10) | (0.65, 0.30, 0.05) |
Q2 | (0.55, 0.40, 0.05) | (0.10, 0.80, 0.10) | (0.40, 0.50, 0.10) | (0.65, 0.30, 0.05) | (0.40, 0.50, 0.10) | (0.40, 0.50, 0.10) | (0.40, 0.50, 0.10) | (0.65, 0.30, 0.05) | |
Q3 | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (0.10, 0.80, 0.10) | (0.75, 0.20, 0.05) | (0.75, 0.20, 0.05) | (0.55, 0.40, 0.05) | (0.55, 0.40, 0.05) | (0.65, 0.30, 0.05) | |
Q4 | (0.30, 0.60, 0.10) | (0.30, 0.60, 0.10) | (0.40, 0.50, 0.10) | (0.10, 0.80, 0.10) | (0.40, 0.50, 0.10) | (0.40, 0.50, 0.10) | (0.40, 0.50, 0.10) | (0.55, 0.40, 0.05) | |
Q5 | (0.55, 0.40, 0.05) | (0.75, 0.20, 0.05) | (0.30, 0.60, 0.10) | (0.40, 0.50, 0.10) | (0.10, 0.80, 0.10) | (0.55, 0.40, 0.05) | (0.40, 0.50, 0.10) | (0.55, 0.40, 0.05) | |
Q6 | (0.30, 0.60, 0.10) | (0.30, 0.60, 0.10) | (0.75, 0.20, 0.05) | (0.55, 0.40, 0.05) | (0.75, 0.20, 0.05) | (0.10, 0.80, 0.10) | (0.40, 0.50, 0.10) | (0.40, 0.50, 0.10) | |
Q7 | (0.40, 0.50, 0.10) | (0.55, 0.40, 0.05) | (0.75, 0.20, 0.05) | (0.75, 0.20, 0.05) | (0.65, 0.30, 0.05) | (0.55, 0.40, 0.05) | (0.10, 0.80, 0.10) | (0.40, 0.50, 0.10) | |
Q8 | (0.65, 0.30, 0.05) | (0.65, 0.30, 0.05) | (0.90, 0.05, 0.05) | (1.00, 0.00, 0.00) | (0.65, 0.30, 0.05) | (0.75, 0.20, 0.05) | (0.90, 0.05, 0.05) | (0.10, 0.80, 0.10) | |
D3 | Q1 | (0.10, 0.80, 0.10) | (0.65, 0.30, 0.05) | (0.30, 0.60, 0.10) | (0.40, 0.50, 0.10) | (0.40, 0.50, 0.10) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (0.55, 0.40, 0.05) |
Q2 | (0.90, 0.05, 0.05) | (0.10, 0.80, 0.10) | (0.65, 0.30, 0.05) | (0.40, 0.50, 0.10) | (0.90, 0.05, 0.05) | (0.65, 0.30, 0.05) | (0.90, 0.05, 0.05) | (0.55, 0.40, 0.05) | |
Q3 | (0.30, 0.60, 0.10) | (0.65, 0.30, 0.05) | (0.10, 0.80, 0.10) | (0.90, 0.05, 0.05) | (0.75, 0.20, 0.05) | (0.55, 0.40, 0.05) | (0.65, 0.30, 0.05) | (0.55, 0.40, 0.05) | |
Q4 | (0.30, 0.60, 0.10) | (0.40, 0.50, 0.10) | (0.90, 0.05, 0.05) | (0.10, 0.80, 0.10) | (0.75, 0.20, 0.05) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | |
Q5 | (0.40, 0.50, 0.10) | (0.90, 0.05, 0.05) | (0.75, 0.20, 0.05) | (0.75, 0.20, 0.05) | (0.10, 0.80, 0.10) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | |
Q6 | (0.90, 0.05, 0.05) | (0.65, 0.30, 0.05) | (0.55, 0.40, 0.05) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (0.10, 0.80, 0.10) | (0.75, 0.20, 0.05) | (0.75, 0.20, 0.05) | |
Q7 | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (0.65, 0.30, 0.05) | (0.90, 0.05, 0.05) | (0.75, 0.20, 0.05) | (0.75, 0.20, 0.05) | (0.10, 0.80, 0.10) | (0.90, 0.05, 0.05) | |
Q8 | (0.55, 0.40, 0.05) | (0.55, 0.40, 0.05) | (0.55, 0.40, 0.05) | (0.90, 0.05, 0.05) | (0.75, 0.20, 0.05) | (0.75, 0.20, 0.05) | (0.90, 0.05, 0.05) | (0.10, 0.80, 0.10) | |
D4 | Q1 | (0.10, 0.80, 0.10) | (0.10, 0.80, 0.10) | (0.75, 0.20, 0.05) | (0.75, 0.20, 0.05) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (0.55, 0.40, 0.05) |
Q2 | (0.10, 0.80, 0.10) | (0.10, 0.80, 0.10) | (0.90, 0.05, 0.05) | (0.65, 0.30, 0.05) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | |
Q3 | (0.75, 0.20, 0.05) | (0.90, 0.05, 0.05) | (0.10, 0.80, 0.10) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (1.00, 0.00, 0.00) | |
Q4 | (0.75, 0.20, 0.05) | (0.65, 0.30, 0.05) | (0.90, 0.05, 0.05) | (0.10, 0.80, 0.10) | (0.55, 0.40, 0.05) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (1.00, 0.00, 0.00) | |
Q5 | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (0.55, 0.40, 0.05) | (0.10, 0.80, 0.10) | (1.00, 0.00, 0.00) | (1.00, 0.00, 0.00) | (1.00, 0.00, 0.00) | |
Q6 | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (1.00, 0.00, 0.00) | (0.10, 0.80, 0.10) | (0.55, 0.40, 0.05) | (0.55, 0.40, 0.05) | |
Q7 | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (0.90, 0.05, 0.05) | (1.00, 0.00, 0.00) | (0.55, 0.40, 0.05) | (0.10, 0.80, 0.10) | (0.30, 0.60, 0.10) | |
Q8 | (0.55, 0.40, 0.05) | (0.90, 0.05, 0.05) | (1.00, 0.00, 0.00) | (1.00, 0.00, 0.00) | (0.55, 0.40, 0.05) | (0.55, 0.40, 0.05) | (0.30, 0.60, 0.10) | (0.10, 0.80, 0.10) |
DEs | |
---|---|
D1 | 0.2548 |
D2 | 0.2521 |
D3 | 0.2431 |
D4 | 0.2499 |
Criteria | Ranking | Ranking | Ranking | |||
---|---|---|---|---|---|---|
Q1 | 0.0764 | 8 | 0.1631 | 3 | 0.1198 | 6 |
Q2 | 0.1066 | 7 | 0.1813 | 2 | 0.1439 | 2 |
Q3 | 0.1468 | 2 | 0.2039 | 1 | 0.1754 | 1 |
Q4 | 0.1168 | 6 | 0.0385 | 8 | 0.0776 | 8 |
Q5 | 0.1522 | 1 | 0.1185 | 5 | 0.1353 | 3 |
Q6 | 0.1245 | 5 | 0.1168 | 6 | 0.1206 | 5 |
Q7 | 0.1404 | 3 | 0.1261 | 4 | 0.1332 | 4 |
Q8 | 0.1363 | 4 | 0.0519 | 7 | 0.0941 | 7 |
Urban Rail Transit System | Ranking | |||
---|---|---|---|---|
P1 | −0.1409 | −1.0936 | −0.2057 | 1 |
P2 | −0.5312 | −0.2748 | −0.7893 | 3 |
P3 | −1.3059 | −0.1643 | −1.7376 | 4 |
P4 | −1.9230 | −0.0440 | −3.5346 | 7 |
P5 | −1.7623 | −0.8585 | −1.8449 | 5 |
P6 | −2.4013 | −0.2118 | −2.7362 | 6 |
P7 | −0.0762 | −0.3434 | −0.2828 | 2 |
φ = 0 | φ = 0.1 | φ = 0.2 | φ = 0.3 | φ = 0.4 | φ = 0.5 | φ = 0.6 | φ = 0.7 | φ = 0.8 | φ = 0.9 | φ = 1 | |
---|---|---|---|---|---|---|---|---|---|---|---|
P1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
P2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
P3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 |
P4 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
P5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 4 |
P6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
P7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
ϑ = 1 | ϑ = 2 | ϑ = 3 | ϑ = 4 | ϑ = 5 | ϑ = 6 | ϑ = 7 | ϑ = 8 | ϑ = 9 | ϑ = 10 | |
---|---|---|---|---|---|---|---|---|---|---|
P1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
P2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
P3 | 5 | 5 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
P4 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
P5 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
P6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
P7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Urban Rail Transit System | This Paper | IF-COPRAS | IF-TOPSIS | IF-ARAS |
---|---|---|---|---|
P1 | 1 | 3 | 1 | 3 |
P2 | 3 | 2 | 4 | 2 |
P3 | 4 | 4 | 6 | 4 |
P4 | 7 | 5 | 7 | 5 |
P5 | 5 | 6 | 3 | 6 |
P6 | 6 | 7 | 5 | 7 |
P7 | 2 | 1 | 2 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, B.; Rong, Y.; Yu, L.; Huang, Y. A Hybrid Intuitionistic Fuzzy Group Decision Framework and Its Application in Urban Rail Transit System Selection. Mathematics 2022, 10, 2133. https://doi.org/10.3390/math10122133
Yan B, Rong Y, Yu L, Huang Y. A Hybrid Intuitionistic Fuzzy Group Decision Framework and Its Application in Urban Rail Transit System Selection. Mathematics. 2022; 10(12):2133. https://doi.org/10.3390/math10122133
Chicago/Turabian StyleYan, Bing, Yuan Rong, Liying Yu, and Yuting Huang. 2022. "A Hybrid Intuitionistic Fuzzy Group Decision Framework and Its Application in Urban Rail Transit System Selection" Mathematics 10, no. 12: 2133. https://doi.org/10.3390/math10122133
APA StyleYan, B., Rong, Y., Yu, L., & Huang, Y. (2022). A Hybrid Intuitionistic Fuzzy Group Decision Framework and Its Application in Urban Rail Transit System Selection. Mathematics, 10(12), 2133. https://doi.org/10.3390/math10122133