Solving Inverse Conductivity Problems in Doubly Connected Domains by the Homogenization Functions of Two Parameters
Abstract
:1. Introduction
2. Nonlinear Inverse Problems
2.1. Space-Dependent Inverse Conductivity Problem
2.2. Temperature-Dependent Inverse Conductivity Problem
2.3. Inverse Robin Problem to Determine
2.4. Inverse Problem for
3. Two-Parameter Basis Functions
4. A Novel Two-Parameter Homogenization Function Method
5. Numerical Procedure to Determine
5.1. Numerical Algorithm
5.2. Example 1
5.3. Example 2
6. Numerical Algorithm to Determine
6.1. Numerical Algorithm
6.2. Example 3
6.3. Example 4
7. Numerical Method to Detect
7.1. Numerical Method
7.2. Example 5
8. Numerical Method to Recover
8.1. Example 6
8.2. Example 7
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tuan, N.H.; Khoa, V.A.; Tran, T. On an inverse boundary value problem of a nonlinear elliptic equation in three dimensions. J. Math. Anal. Appl. 2015, 426, 1232–1261. [Google Scholar] [CrossRef]
- Farcas, A.; Elliott, L.; Ingham, D.B.; Lesnic, D.; Mera, N.S. A dual reciprocity boundary element method for the regularized numerical solution of the inverse source problem associated to the Poisson equation. Inv. Prob. Sci. Eng. 2003, 11, 123–139. [Google Scholar] [CrossRef]
- Jin, B.T.; Marin, L. The method of fundamental solutions for inverse source problems associated with the steady-state heat conduction. Int. J. Numer. Meth. Eng. 2007, 69, 1570–1589. [Google Scholar] [CrossRef]
- Klose, A.D.; Ntziachristos, V.; Hielscher, A.H. The inverse source problem based on the radiative transfer equation in optical molecular imaging. J. Comput. Phys. 2005, 202, 323–345. [Google Scholar] [CrossRef]
- Hon, Y.C.; Li, M.; Melnikov, Y.A. Inverse source identification by Green’s function. Eng. Anal. Bound. Elem. 2010, 34, 352–358. [Google Scholar] [CrossRef]
- Li, X.X.; Guo, H.Z.; Wan, S.M.; Yang, F. Inverse source identification by the modified regularization method on Poisson equation. J. Appl. Math. 2012, 2012, 971952. [Google Scholar] [CrossRef]
- Ahmadabadi, M.N.; Arab, M.; Ghaini, F. The method of fundamental solutions for the inverse space-dependent heat source problem. Eng. Anal. Bound. Elem. 2009, 33, 1231–1235. [Google Scholar] [CrossRef]
- Slimani, S.; Medarhri, I.; Najib, K.; Zine, A. Identification of the source function for a seawater intrusion problem in unconfined aquifer. Numer. Algor. 2020, 84, 1565–1587. [Google Scholar] [CrossRef]
- Alahyane, M.; Boutaayamou, I.; Chrifi, A.; Echarroudi, Y.; Ouakrim, Y. Numerical study of inverse source problem for internal degenerate parabolic equation. Int. J. Comput. Meth. 2020, 18, 2050032. [Google Scholar] [CrossRef]
- Djennadi, S.; Shawagfeh, N.; Arqub, O.A. A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations. Chaos Solitons Fractals 2021, 150, 111127. [Google Scholar] [CrossRef]
- Ma, Y.K.; Prakash, P.; Deiveegan, A. Generalized Tikhonov methods for an inverse source problem of the time-fractional diffusion equation. Chaos Solitons Fractals 2018, 108, 39–48. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Le, D.L. Regularized solution of an inverse source problem for a time fractional diffusion equation. Appl. Math. 2016, 40, 8244–8264. [Google Scholar] [CrossRef]
- Liu, C.-S. An energetic boundary functional method for solving the inverse source problems of 2D nonlinear elliptic equations. Eng. Anal. Bound. Elem. 2020, 118, 204–215. [Google Scholar] [CrossRef]
- Kwon, K. Identification of anisotropic anomalous region in inverse problems. Inverse Probl. 2004, 20, 1117–1136. [Google Scholar] [CrossRef]
- Huntul, M.J.; Lesnic, D. An inverse problem of finding the time-dependent thermal conductivity from boundary data. Int. Commun. Heat Mass Transf. 2017, 85, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Isakov, V.; Sever, A. Numerical implementation of an integral equation method for the inverse conductivity problem. Inverse Probl. 1996, 12, 939–951. [Google Scholar] [CrossRef]
- Murthy, R.; Lin, Y.H.; Shin, K.; Mueller, J.L. A direct reconstruction algorithm for the anisotropic inverse conductivity problem based on Calderόn method in the plane. Inverse Probl. 2020, 12, 125008. [Google Scholar] [CrossRef]
- Liu, C.-S.; Qiu, L.; Lin, J. Simulating thin plate bending problems by a family of two-parameter homogenization functions. Appl. Math. Model. 2020, 79, 284–299. [Google Scholar] [CrossRef]
- Liu, C.-S.; Atluri, S.N. An iterative and adaptive Lie-group method for solving the Calderόn inverse problem. Comput. Model. Eng. Sci. 2010, 64, 299–326. [Google Scholar]
- Sladek, J.; Sladek, V.; Hon, Y.C. Inverse heat conduction problems by meshless local Petrov–Galerkin method. Eng. Anal. Boundary Elem. 2006, 30, 650–661. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, W.; Zhang, C.; He, X. A meshless singular boundary method for three-dimensional inverse heat conduction problems in general anisotropic media. Int. J. Heat Mass Transf. 2015, 84, 91–102. [Google Scholar] [CrossRef]
- Shivanian, E.; Khodabandehlo, H.R. Application of meshless local radial point interpolation (MLRPI) on a one-dimensional inverse heat conduction problem. Ain Shams Eng. J. 2016, 7, 993–1000. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; He, S. A meshless method based on the method of fundamental solution for three-dimensional inverse heat conduction problems. Int. J. Heat Mass Transf. 2017, 108, 945–960. [Google Scholar] [CrossRef]
ME() | 7.7369 | 1.8430 | 0.4017 | 0.2147 | 0.18364 |
N | 5 | 10 | 20 | 25 | 30 |
---|---|---|---|---|---|
ME(S) | 57.34 | 43.59 | 45.93 | 37.06 | 1.22 |
N | 3 | 8 | 14 | 18 | 20 |
---|---|---|---|---|---|
ME(S) | 12.09 | 10.98 | 8.98 | 8.51 | 1.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Shi, L.; Liu, C.-S.; Chen, C.S. Solving Inverse Conductivity Problems in Doubly Connected Domains by the Homogenization Functions of Two Parameters. Mathematics 2022, 10, 2256. https://doi.org/10.3390/math10132256
Lu J, Shi L, Liu C-S, Chen CS. Solving Inverse Conductivity Problems in Doubly Connected Domains by the Homogenization Functions of Two Parameters. Mathematics. 2022; 10(13):2256. https://doi.org/10.3390/math10132256
Chicago/Turabian StyleLu, Jun, Lianpeng Shi, Chein-Shan Liu, and C. S. Chen. 2022. "Solving Inverse Conductivity Problems in Doubly Connected Domains by the Homogenization Functions of Two Parameters" Mathematics 10, no. 13: 2256. https://doi.org/10.3390/math10132256
APA StyleLu, J., Shi, L., Liu, C. -S., & Chen, C. S. (2022). Solving Inverse Conductivity Problems in Doubly Connected Domains by the Homogenization Functions of Two Parameters. Mathematics, 10(13), 2256. https://doi.org/10.3390/math10132256