DeepDA-Ace: A Novel Domain Adaptation Method for Species-Specific Acetylation Site Prediction
Abstract
:1. Introduction
- (1)
- We propose a semantic adversarial learning strategy that reduces the differences in acetylation distribution across species, enabling efficient knowledge transfer.
- (2)
- We design an attention-based DCNN model to extract discriminative features from local sequence of potential acetylation sites to improve the prediction accuracy.
- (3)
- We conduct extensive comparison experiments to demonstrate the superiority of the proposed domain adaptation method over the fine-tuning method and state-of-the-art acetylation prediction tools.
2. Materials and Methods
2.1. Data Collection
2.2. Protein Sequence Coding
2.3. DeepDA-Ace Architecture
2.4. Performance Evaluation
3. Results
3.1. Sequence Analysis of Acetylation Sites in Different Species
3.2. Effectiveness of Domain Adaptation
3.3. Comparison with Existing Acetylation Site Prediction Tools
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Details of DeepDA-Ace Architectures
- CNN layer: in the convolutional layer, it has a different number of feature maps in a different CNN layer, where the kernel size is 1 in the first CNN layer, 3 in the other layers, strides are 1, and the activation function is ReLU.
- Flatten layer: in the flatten layer, the feature maps are flattened as one-dimensional features.
- Fully connected layer: in the fully connected layer, the activation function is ReLU.
- Softmax layer: the output layer, which has two neurons corresponding to acetylation and non-acetylation. The activation function is softmax.
Appendix A.2. Implementation Details of Architectures
Appendix B
Layers | Channels | Kernel | Output Size |
---|---|---|---|
Conv1(ReLU) | 32 | 1 × 1 | 31 × 21 |
Conv2(ReLU) | 48 | 3 × 3 | 31 × 21 |
Conv3(ReLU) | 64 | 3 × 3 | 31 × 21 |
Conv4(ReLU) | 80 | 3 × 3 | 31 × 21 |
Conv5(ReLU) | 96 | 3 × 3 | 31 × 21 |
Conv6(ReLU) | 112 | 3 × 3 | 31 × 21 |
Conv7(ReLU) | 128 | 3 × 3 | 31 × 21 |
Transition1 | 64 | 1 × 1 | 31 × 21 |
Max-pooling1 | 64 | 2 × 2 | 15 × 10 |
Self-attention1 | 15 × 10 | ||
Conv8(ReLU) | 80 | 3 × 3 | 15 × 10 |
Conv9(ReLU) | 96 | 3 × 3 | 15 × 10 |
Conv10(ReLU) | 112 | 3 × 3 | 15 × 10 |
Conv11(ReLU) | 128 | 3 × 3 | 15 × 10 |
Conv12(ReLU) | 144 | 3 × 3 | 15 × 10 |
Conv13(ReLU) | 160 | 3 × 3 | 15 × 10 |
Transition2 | 80 | 1 × 1 | 15 × 10 |
Max-pooling2 | 80 | 2 × 2 | 7 × 5 |
Self-attention2 | 7 × 5 | ||
Conv14(ReLU) | 96 | 3 × 3 | 7 × 5 |
Conv15(ReLU) | 112 | 3 × 3 | 7 × 5 |
Conv16(ReLU) | 128 | 3 × 3 | 7 × 5 |
Conv17(ReLU) | 144 | 3 × 3 | 7 × 5 |
Conv18(ReLU) | 160 | 3 × 3 | 7 × 5 |
Conv19(ReLU) | 176 | 3 × 3 | 7 × 5 |
FC1(ReLU) | --- | --- | 6160 × 1 |
FC2(Softmax) | --- | --- | 2 × 1 |
Sp = 95% | Sp = 90% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Species | Method | Pre | F1 | Acc | Sn | Pre | F1 | Acc | Sn |
R. norvegicus | DeepDA-Ace | 0.783 | 0.287 | 0.557 | 0.176 | 0.746 | 0.411 | 0.587 | 0.284 |
CapsNe | 0.691 | 0.188 | 0.523 | 0.109 | 0.686 | 0.323 | 0.550 | 0.211 | |
PAIL | 0.545 | 0.105 | 0.497 | 0.058 | 0.581 | 0.217 | 0.511 | 0.134 | |
S. japonicum | DeepDA-Ace | 0.804 | 0.339 | 0.584 | 0.215 | 0.804 | 0.542 | 0.657 | 0.408 |
CapsNet | 0.744 | 0.252 | 0.553 | 0.152 | 0.747 | 0.421 | 0.600 | 0.293 | |
PAIL | 0.583 | 0.130 | 0.514 | 0.073 | 0.558 | 0.205 | 0.517 | 0.126 | |
S. cerevisiae | DeepDA-Ace | 0.809 | 0.326 | 0.57 | 0.204 | 0.791 | 0.500 | 0.627 | 0.365 |
CapsNet | 0.714 | 0.206 | 0.527 | 0.121 | 0.724 | 0.375 | 0.570 | 0.253 | |
PAIL | 0.538 | 0.102 | 0.494 | 0.056 | 0.542 | 0.189 | 0.499 | 0.114 | |
M. musculus | DeepDA-Ace | 0.793 | 0.298 | 0.56 | 0.184 | 0.760 | 0.438 | 0.599 | 0.308 |
CapsNet | 0.682 | 0.179 | 0.519 | 0.103 | 0.697 | 0.338 | 0.555 | 0.223 | |
PAIL | 0.467 | 0.077 | 0.488 | 0.042 | 0.484 | 0.153 | 0.488 | 0.091 | |
E. coli | DeepDA-Ace | 0.805 | 0.325 | 0.573 | 0.203 | 0.771 | 0.462 | 0.613 | 0.33 |
CapsNet | 0.738 | 0.233 | 0.541 | 0.138 | 0.731 | 0.391 | 0.581 | 0.267 | |
PAIL | 0.488 | 0.085 | 0.495 | 0.047 | 0.449 | 0.136 | 0.486 | 0.08 | |
B. velezensis | DeepDA-Ace | 0.829 | 0.352 | 0.570 | 0.224 | 0.815 | 0.541 | 0.640 | 0.405 |
CapsNet | 0.806 | 0.309 | 0.552 | 0.191 | 0.761 | 0.423 | 0.582 | 0.293 | |
PAIL | 0.611 | 0.129 | 0.491 | 0.072 | 0.582 | 0.210 | 0.496 | 0.128 | |
P. falciparum | DeepDA-Ace | 0.717 | 0.203 | 0.513 | 0.118 | 0.746 | 0.391 | 0.567 | 0.265 |
CapsNet | 0.727 | 0.213 | 0.516 | 0.125 | 0.674 | 0.293 | 0.526 | 0.187 | |
PAIL | 0.605 | 0.128 | 0.489 | 0.072 | 0.606 | 0.219 | 0.500 | 0.134 | |
O. sativa | DeepDA-Ace | 0.882 | 0.462 | 0.607 | 0.313 | 0.852 | 0.613 | 0.674 | 0.479 |
CapsNet | 0.714 | 0.182 | 0.494 | 0.104 | 0.778 | 0.424 | 0.573 | 0.292 | |
PAIL | 0.500 | 0.077 | 0.461 | 0.042 | 0.600 | 0.207 | 0.483 | 0.125 | |
A. thaliana | DeepDA-Ace | 0.933 | 0.491 | 0.532 | 0.333 | 0.917 | 0.667 | 0.645 | 0.524 |
CapsNet | 0.667 | 0.089 | 0.339 | 0.048 | 0.667 | 0.167 | 0.355 | 0.095 | |
PAIL | 0.750 | 0.130 | 0.355 | 0.071 | 0.600 | 0.128 | 0.339 | 0.071 |
References
- Kim, S.C.; Sprung, R.; Chen, Y.; Xu, Y.; Ball, H.; Pei, J.; Cheng, T.; Kho, Y.; Xiao, H.; Xiao, L.; et al. Substrate and Functional Diversity of Lysine Acetylation Revealed by a Proteomics Survey. Mol. Cell 2006, 23, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Kamita, M.; Kimura, Y.; Ino, Y.; Kamp, R.M.; Polevoda, B.; Sherman, F.; Hirano, H. N(α)-Acetylation of yeast ribosomal proteins and its effect on protein synthesis. J. Proteom. 2011, 74, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Glozak, M.A.; Sengupta, N.; Zhang, X.; Seto, E. Acetylation and deacetylation of non-histone proteins. Gene 2005, 363, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.; Ramírez-Torres, A.; Encarnación-Guevara, S. Lysine acetylation and cancer: A proteomics perspective. J. Proteom. 2016, 150, 297–309. [Google Scholar] [CrossRef]
- Xi, J.; Yuan, X.; Wang, M.; Li, A.; Li, X.; Huang, Q. Inferring subgroup-specific driver genes from heterogeneous cancer samples via subspace learning with subgroup indication. Bioinformatics 2020, 36, 1855–1863. [Google Scholar] [CrossRef] [PubMed]
- Medzihradszky, K.F. Peptide sequence analysis. Methods Enzymol. 2005, 402, 209–244. [Google Scholar]
- Zhou, H.; Boyle, R.; Aebersold, R. Quantitative Protein Analysis by Solid Phase Isotope Tagging and Mass Spectrometry. Methods Mol. Biol. 2004, 261, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, X.-B.; Ding, J.; Wu, L.-Y.; Deng, N.-Y. Lysine acetylation sites prediction using an ensemble of support vector machine classifiers. J. Theor. Biol. 2010, 264, 130–135. [Google Scholar] [CrossRef]
- Hou, T.; Zheng, G.; Zhang, P.; Jia, J.; Li, J.; Xie, L.; Wei, C.; Li, Y. LAceP: Lysine Acetylation Site Prediction Using Logistic Regression Classifiers. PLoS ONE 2014, 9, e89575. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, M.; Wang, H.; Tan, H.; Zhang, Z.; Webb, G.I.; Song, J. Accurate in silico identification of species-specific acetylation sites by integrating protein sequence-derived and functional features. Sci. Rep. 2014, 4, 5765. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Cao, M.; Luo, K.; Wang, L.; Wen, P.; Shi, S. ProAcePred: Prokaryote lysine acetylation sites prediction based on elastic net feature optimization. Bioinformatics 2018, 34, 3999–4006. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhou, Y.; Zhang, Z.; Song, J. Towards more accurate prediction of ubiquitination sites: A comprehensive review of current methods, tools and features. Brief. Bioinform. 2015, 16, 640–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, L.; Liu, W.; Lei, M.; Yu, X. An Improved Residual Network for Pork Freshness Detection Using Near-Infrared Spectroscopy. Entropy 2021, 23, 1293. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Sharma, S.; Kumar, V.; Kaur, M.; Baz, M.; Masud, M. Spoken Language Identification Using Deep Learning. Comput. Intell. Neurosci. 2021, 2021, 5123671. [Google Scholar] [CrossRef]
- Lei, M.; Li, J.; Li, M.; Zou, L.; Yu, H. An Improved UNet++ Model for Congestive Heart Failure Diagnosis Using Short-Term RR Intervals. Diagnostics 2021, 11, 534. [Google Scholar] [CrossRef]
- Yang, H.; Wang, M.; Liu, X.; Zhao, X.-M.; Li, A. PhosIDN: An integrated deep neural network for improving protein phosphorylation site prediction by combining sequence and protein–protein interaction information. Bioinformatics 2021, 37, 4668–4676. [Google Scholar] [CrossRef]
- Luo, F.; Wang, M.; Liu, Y.; Zhao, X.-M.; Li, A. DeepPhos: Prediction of protein phosphorylation sites with deep learning. Bioinformatics 2019, 35, 2766–2773. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, A.; Zhao, X.M.; Wang, M. DeepTL-Ubi: A novel deep transfer learning method for effectively predicting ubiquitination sites of multiple species. Methods 2021, 192, 103–111. [Google Scholar] [CrossRef]
- Wang, D.; Liang, Y.; Xu, D. Capsule network for protein post-translational modification site prediction. Bioinformatics 2018, 35, 2386–2394. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.; Li, F.; Li, C.; Marquez-Lago, T.; Leier, A.; Akutsu, T.; Webb, G.I.; Xu, D.; Smith, A.I.; et al. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites. Brief. Bioinform. 2018, 20, 2267–2290. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. NIPS 2012, 60, 84–90. [Google Scholar] [CrossRef]
- Ng, H.-W.; Nguyen, V.D.; Vonikakis, V.; Winkler, S. Deep Learning for Emotion Recognition on Small Datasets Using Transfer Learning. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, Seattle, DC, USA, 9 November 2015; pp. 443–449. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Darrell, T.; Saenko, K. Simultaneous Deep Transfer Across Domains and Tasks. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Rozantsev, A.; Salzmann, M.; Fua, P. Beyond Sharing Weights for Deep Domain Adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 801–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Zhou, J.; Lin, S.; Deng, W.; Zhang, Y.; Xue, Y. PLMD: An updated data resource of protein lysine modifications. J. Genet. Genom. 2017, 44, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef] [Green Version]
- Vacic, V.; Iakoucheva, L.; Radivojac, P. Two Sample Logo: A graphical representation of the differences between two sets of sequence alignments. Bioinformatics 2006, 22, 1536–1537. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Wang, C.; Zhang, Y.; Xu, Y.; Zhang, S.; Liu, Z.; Xue, Y. GPS-PAIL: Prediction of lysine acetyltransferase-specific modification sites from protein sequences. Sci. Rep. 2016, 6, 39787. [Google Scholar] [CrossRef] [Green Version]
- Linding, R.; Jensen, L.J.; Ostheimer, G.J.; van Vugt, M.A.; Jørgensen, C.; Miron, I.M.; Diella, F.; Colwill, K.; Taylor, L.; Elder, K.; et al. Systematic Discovery of In Vivo Phosphorylation Networks. Cell 2007, 129, 1415–1426. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Ye, M.; Liu, Z.; Cheng, H.; Jiang, X.; Han, G.; Songyang, Z.; Tan, Y.; Wang, H.; Ren, J.; et al. Systematic Analysis of Protein Phosphorylation Networks from Phosphoproteomic Data. Mol. Cell. Proteom. 2012, 11, 1070–1083. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, M.; Xi, J.; Luo, F.; Li, A. PTM-ssMP: A Web Server for Predicting Different Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile. Int. J. Biol. Sci. 2018, 14, 946–956. [Google Scholar] [CrossRef] [Green Version]
- Xi, J.; Wang, M.; Li, A. Discovering mutated driver genes through a robust and sparse co-regularized matrix factorization framework with prior information from mRNA expression patterns and interaction network. BMC Bioinform. 2018, 19, 214. [Google Scholar] [CrossRef]
Species | Number of Proteins | Number of Sites |
---|---|---|
H. sapiens | 4993 | 24,376 |
M. musculus | 2759 | 9837 |
S. cerevisiae | 2729 | 12,189 |
R. norvegicus | 3372 | 10,306 |
S. japonicum | 1031 | 1921 |
A. thaliana | 192 | 304 |
E. coli | 1766 | 8681 |
B. velezensis | 1103 | 2905 |
P. falciparum | 1177 | 3060 |
O. sativa | 287 | 438 |
Species | Species-Specific | General | ||
---|---|---|---|---|
DeepDA-Ace | Fine-Tune | Simple Training | Combined | |
M. musculus | 0.758 | 0.735 | 0.702 | 0.724 |
S. cerevisiae | 0.780 | 0.732 | 0.713 | 0.732 |
R. norvegicus | 0.732 | 0.699 | 0.691 | 0.703 |
S. japonicum | 0.795 | 0.680 | 0.617 | 0.722 |
A. thaliana | 0.798 | 0.742 | 0.696 | 0.704 |
E. coli | 0.749 | 0.701 | 0.705 | 0.712 |
B. velezensis | 0.794 | 0.722 | 0.707 | 0.684 |
P. falciparum | 0.688 | 0.594 | 0.636 | 0.593 |
O. sativa | 0.836 | 0.756 | 0.659 | 0.670 |
Average | 0.770 | 0.707 | 0.680 | 0.694 |
Sp = 95% | Sp = 90% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Species | Method | Pre | F1 | Acc | Sn | Pre | F1 | Acc | Sn | |
R. norvegicus | species-specific | DeepDA-Ace | 0.783 | 0.287 | 0.557 | 0.176 | 0.746 | 0.411 | 0.587 | 0.284 |
Fine-tune | 0.720 | 0.213 | 0.531 | 0.125 | 0.700 | 0.341 | 0.558 | 0.225 | ||
Simple training | 0.759 | 0.256 | 0.546 | 0.154 | 0.734 | 0.390 | 0.578 | 0.266 | ||
general | Combined | 0.749 | 0.243 | 0.541 | 0.145 | 0.743 | 0.406 | 0.585 | 0.279 | |
S. japonicum | species-specific | DeepDA-Ace | 0.804 | 0.339 | 0.584 | 0.215 | 0.804 | 0.542 | 0.657 | 0.408 |
Fine-tune | 0.706 | 0.213 | 0.54 | 0.126 | 0.703 | 0.353 | 0.571 | 0.236 | ||
Simple training | 0.697 | 0.205 | 0.538 | 0.12 | 0.708 | 0.359 | 0.574 | 0.241 | ||
general | Combined | 0.778 | 0.297 | 0.569 | 0.183 | 0.736 | 0.403 | 0.592 | 0.277 | |
S. cerevisiae | species-specific | DeepDA-Ace | 0.809 | 0.326 | 0.57 | 0.204 | 0.791 | 0.50 | 0.627 | 0.365 |
Fine-tune | 0.758 | 0.252 | 0.543 | 0.151 | 0.752 | 0.421 | 0.59 | 0.292 | ||
Simple training | 0.780 | 0.281 | 0.553 | 0.171 | 0.752 | 0.421 | 0.59 | 0.292 | ||
general | Combined | 0.771 | 0.268 | 0.549 | 0.163 | 0.748 | 0.415 | 0.588 | 0.287 | |
M. musculus | species-specific | DeepDA-Ace | 0.793 | 0.298 | 0.56 | 0.184 | 0.760 | 0.438 | 0.599 | 0.308 |
Fine-tune | 0.735 | 0.225 | 0.535 | 0.133 | 0.716 | 0.365 | 0.567 | 0.245 | ||
Simple training | 0.743 | 0.234 | 0.538 | 0.139 | 0.731 | 0.386 | 0.576 | 0.263 | ||
general | Combined | 0.776 | 0.273 | 0.551 | 0.166 | 0.736 | 0.395 | 0.579 | 0.27 | |
E. coli | species-specific | DeepDA-Ace | 0.805 | 0.325 | 0.573 | 0.203 | 0.771 | 0.462 | 0.613 | 0.33 |
Fine-tune | 0.750 | 0.246 | 0.545 | 0.147 | 0.723 | 0.379 | 0.576 | 0.257 | ||
Simple training | 0.788 | 0.297 | 0.563 | 0.183 | 0.749 | 0.422 | 0.594 | 0.293 | ||
general | Combined | 0.788 | 0.297 | 0.563 | 0.183 | 0.746 | 0.415 | 0.591 | 0.288 | |
B. velezensis | species-specific | DeepDA-Ace | 0.829 | 0.352 | 0.570 | 0.224 | 0.815 | 0.541 | 0.64 | 0.405 |
Fine-tune | 0.725 | 0.208 | 0.516 | 0.122 | 0.723 | 0.360 | 0.554 | 0.240 | ||
Simple training | 0.750 | 0.233 | 0.525 | 0.138 | 0.733 | 0.377 | 0.561 | 0.253 | ||
general | Combined | 0.797 | 0.295 | 0.547 | 0.181 | 0.741 | 0.388 | 0.566 | 0.263 | |
P. falciparum | species-specific | DeepDA-Ace | 0.717 | 0.203 | 0.513 | 0.118 | 0.746 | 0.391 | 0.567 | 0.265 |
Fine-tune | 0.706 | 0.194 | 0.510 | 0.112 | 0.681 | 0.301 | 0.529 | 0.193 | ||
Simple training | 0.758 | 0.245 | 0.528 | 0.146 | 0.713 | 0.341 | 0.546 | 0.224 | ||
general | Combined | 0.741 | 0.227 | 0.521 | 0.134 | 0.678 | 0.297 | 0.528 | 0.190 | |
O. sativa | species-specific | DeepDA-Ace | 0.882 | 0.462 | 0.607 | 0.313 | 0.852 | 0.613 | 0.674 | 0.479 |
Fine-tune | 0.714 | 0.182 | 0.494 | 0.104 | 0.826 | 0.535 | 0.629 | 0.396 | ||
Simple training | 0.867 | 0.413 | 0.584 | 0.271 | 0.765 | 0.400 | 0.562 | 0.271 | ||
general | Combined | 0.818 | 0.305 | 0.539 | 0.188 | 0.818 | 0.514 | 0.618 | 0.375 | |
A. thaliana | species-specific | DeepDA-Ace | 0.933 | 0.491 | 0.532 | 0.333 | 0.917 | 0.667 | 0.645 | 0.524 |
Fine-tune | 0.500 | 0.045 | 0.323 | 0.024 | 0.895 | 0.557 | 0.565 | 0.405 | ||
Simple training | 0.889 | 0.314 | 0.435 | 0.19 | 0.882 | 0.508 | 0.532 | 0.357 | ||
general | Combined | 0.875 | 0.28 | 0.419 | 0.167 | 0.778 | 0.275 | 0.403 | 0.167 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, Q.; Xi, J. DeepDA-Ace: A Novel Domain Adaptation Method for Species-Specific Acetylation Site Prediction. Mathematics 2022, 10, 2364. https://doi.org/10.3390/math10142364
Liu Y, Wang Q, Xi J. DeepDA-Ace: A Novel Domain Adaptation Method for Species-Specific Acetylation Site Prediction. Mathematics. 2022; 10(14):2364. https://doi.org/10.3390/math10142364
Chicago/Turabian StyleLiu, Yu, Qiang Wang, and Jianing Xi. 2022. "DeepDA-Ace: A Novel Domain Adaptation Method for Species-Specific Acetylation Site Prediction" Mathematics 10, no. 14: 2364. https://doi.org/10.3390/math10142364
APA StyleLiu, Y., Wang, Q., & Xi, J. (2022). DeepDA-Ace: A Novel Domain Adaptation Method for Species-Specific Acetylation Site Prediction. Mathematics, 10(14), 2364. https://doi.org/10.3390/math10142364