Hölder Inequalities for a Generalized Subclass of Univalent Functions Involving Borel Distributions
Abstract
:1. Introduction
2. Characterization Property for
3. Convolution Properties
Hölder-Type Inequalities
4. Closure Properties under Integral Transform
- (1)
- If is starlike of order then is also starlike of order α.
- (2)
- If is convex of order then is also convex of order α.
5. Subordination Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duren, P.L. Univalent Functions; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Goodman, A.W. Univalent Functions; Mariner: Tampa, FL, USA, 1983; Volume I–II. [Google Scholar]
- Robertson, M.S. On the theory of univalent functions. Ann. Math. 1936, 37, 374–408. [Google Scholar] [CrossRef]
- Alexander, J.W. Functions which map the interior of the unit circle upon simple regions. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Brickman, L.; MacGregor, T.H.; Wilken, D.R. Generating functions for some classes of univalent Convex hulls of some classical families of univalent functions. Trans. Am. Math. Soc. 1971, 156, 91–107. [Google Scholar] [CrossRef]
- de Branges, L. Aproof of the Bieberbach Conjecture. Acta Math. 1982, 154, 137–152. [Google Scholar] [CrossRef]
- Silverman, H. Univalent functions with negative coefficients. Proc. Am. Math. Soc. 1975, 51, 109–116. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Bulboaca, T.; Dziok, J. Pascal distribution series connected with certain subclasses of univalent functions. Kyungpook Math. J. 2019, 59, 301–314. [Google Scholar]
- Murugusundaramoorthy, G. Subclasses of starlike and convex functions involving Poisson distribution series. Afr. Mat. 2017, 28, 1357–1366. [Google Scholar] [CrossRef]
- Nazeer, W.; Mehmood, Q.; Kang, S.M.; Haq, A.U. An application of Bionomial distribution series on certain analytic functions. J. Comput. Anal. Appl. 2019, 26, 11–17. [Google Scholar]
- Porwal, S.; Kumar, M. A unified study on starlike and convex functions associated with Poisson distribution series. Afr. Mat. 2016, 27, 10–21. [Google Scholar] [CrossRef]
- Wanas, A.K.; Al-Ziadi, N.A. Applications of beta negative binomial distribution series on holomorphic funxtions. Earthline J. Math. Sci. 2021, 6, 271–292. [Google Scholar] [CrossRef]
- Najafzadeh, S.; Acu, M. On the Chebyshev polynomial for a certain class of analytic univalent functions. J. Funct. Spaces 2021, 2021, 3716428. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Wanas, A.K. Applications of the Horadam polynomials involving λ-pseudo-Starlike Bi-univalent functions associated with a certain convolution operator. Filomat 2021, 35, 4645–4655. [Google Scholar] [CrossRef]
- Wanas, A.K.; Khuttar, J.A. Applications of Borel distribution series on analytic functions. Earthline J. Math. Sci. 2020, 4, 71–82. [Google Scholar] [CrossRef]
- Aouf, M.K.; Seoudy, T.M. Convolution properties for classes of bounded analytic functions with complex order defined by q-derivative operator. Rev. Real Acad. Cienc. Exactas Ser. A Mat. 2019, 113, 1279–1288. [Google Scholar] [CrossRef]
- Silverman, H.; Silvia, E.M.; Telage, D. Convolution conditions for convexity, starlikeness and spiral-likeness. Math. Z. 1978, 162, 125–130. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Arif, M.; Raza, M. Convolution properties of meromorphically harmonic functions defined by a generalized convolution q-derivative operator. AIMS Math. 2021, 6, 5869–5885. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Murugusundaramoorthy, G.; Sivasubramanian, S. Hypergeometric functions in the parabolic starlike and uniformly convex domains. Integral Transform. Spec. Funct. 2007, 18, 511–520. [Google Scholar] [CrossRef]
- Feichtinger, H.G. Homogeneous Banach Spaces as Banach Convolution Modules over M(G). Mathematics 2022, 10, 364. [Google Scholar] [CrossRef]
- Ragusa, M.A. Parabolic Herz spaces and their applications. Appl. Math. Lett. 2012, 25, 1270–1273. [Google Scholar] [CrossRef] [Green Version]
- Altintas, O. On a subclass of certain starlike functions with negative coefficients. Math. Japon. 1991, 36, 489–495. [Google Scholar]
- Altintas, O.; Owa, S. On a subclass of univalent functions with negative coefficients. Pusan Kyongnam Math. J. 1988, 4, 41–46. [Google Scholar]
- Aouf, M.K.; Cho, N.E. On a certain subclass of analytic functions with negative coefficients. Turk. J. Math. 1998, 22, 15–32. [Google Scholar]
- Aouf, M.K.; Darwish, H.E.; Attiya, A.A. Generalization of certain subclasses of analytic functions with negative coefficients. Stud. Univ. Babeș-Bolyai Math. 2000, 45, 11–22. [Google Scholar]
- Aouf, M.K.; Hossen, H.M.; Lashin, A.Y. On certain families of analytic functions with negative coefficients. Indian J. Pure Appl. Math. 2000, 31, 999–1015. [Google Scholar]
- Aouf, M.K. Srivastava, H.M. Some families of starlike functions with negative coefficients. J. Math. Anal. Appl. 1996, 203, 762–790. [Google Scholar] [CrossRef]
- Cho, N.E.; Aouf, M.K. Some applications of fractional calculus operators to a certain subclass of analytic functions with negative coefficients. Turk. J. Math. 1996, 20, 553–562. [Google Scholar]
- Ahmad, B.; Khan, M.G.; Cotîrlǎ, L.I. Applications of Borel-Type Distributions Series to a Class of Janowski-Type Analytic Functions. Symmetry 2022, 14, 322. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Murugusundaramoorty, G.; Alburaikan, A. A bi-Bazilevič functions based on the Mittag-Leffler-Type Borel distribution associated with Legendre polynomials. J. Math. Comput. Sci. 2021, 24, 235–245. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Murugusundaramoorthy, G. Applications on a subclass of β-uniformly starlike functions connected with q-Borel distribution. Asian-Eur. J. Math 2021, 2250158. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Murugusundaramoorty, G.; El-Deeb, S.M. Faber polynomial coefficient estimates of bi-close-to-convex functions connected with Borel distribution of the Mittag-Leffler-type. J. Nonlinear Var. Anal. 2021, 5, 103–118. [Google Scholar]
- Chatterjea, S.K. On starlike functions. J. Pure Math. 1981, 1, 23–26. [Google Scholar]
- Srivastava, H.M.; Owa, S.; Chatterjea, S.K. A note on certain classes of starlike functions. Rend. Sem. Mat. Univ. Padova 1987, 77, 115–124. [Google Scholar]
- Schild, A.; Silverman, H. Convolution of univalent functions with negative coefficients. Ann. Univ. Mariae Curie-Sklodowska Sect. A 1975, 29, 99–107. [Google Scholar]
- Nishiwaki, J.; Owa, S.; Srivastava, H.M. Convolution and Hölder-type inequalities for a certain class of analytic functions. Math. Inequal. Appl. 2008, 11, 717–727. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Kim, Y.C.; Owa, S. Generalizations of Hadamard products of functions with negative coefficients. J. Math. Anal. Appl. 1996, 199, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Fournier, R.; Ruscheweyh, S. On two extremal problems related to univalent functions. Rocky Mt. J. Math. 1994, 24, 529–538. [Google Scholar] [CrossRef]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Kim, Y.C.; Ronning, F. Integral transform of certain subclasses of analytic functions. J. Math. Anal. Appl. 2001, 258, 466–489. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics; Dekker: New York, NY, USA, 2000; Volume 225. [Google Scholar]
- Bulboacã, T. Differential Subordinations and Superordinations, Recent Results; House of Scientific Book Publishing: Cluj-Napoca, Romania, 2005. [Google Scholar]
- Wilf, H.S. Subordinating factor sequence for convex maps of the unit circle. Proc. Am. Math. Soc. 1961, 12, 689–693. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformatioons. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Srivastava, H.M.; Wanas, A.K.; Srivastava, R. Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials. Symmetry 2021, 13, 1230. [Google Scholar] [CrossRef]
- Deniz, E.; Gören, S. Geometric properties of generalized Dini functions. Honam Math. J. 2019, 41, 101–116. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murugusundaramoorthy, G.; Cotîrlǎ, L.-I. Hölder Inequalities for a Generalized Subclass of Univalent Functions Involving Borel Distributions. Mathematics 2022, 10, 2430. https://doi.org/10.3390/math10142430
Murugusundaramoorthy G, Cotîrlǎ L-I. Hölder Inequalities for a Generalized Subclass of Univalent Functions Involving Borel Distributions. Mathematics. 2022; 10(14):2430. https://doi.org/10.3390/math10142430
Chicago/Turabian StyleMurugusundaramoorthy, Gangadharan, and Luminiţa-Ioana Cotîrlǎ. 2022. "Hölder Inequalities for a Generalized Subclass of Univalent Functions Involving Borel Distributions" Mathematics 10, no. 14: 2430. https://doi.org/10.3390/math10142430
APA StyleMurugusundaramoorthy, G., & Cotîrlǎ, L. -I. (2022). Hölder Inequalities for a Generalized Subclass of Univalent Functions Involving Borel Distributions. Mathematics, 10(14), 2430. https://doi.org/10.3390/math10142430