Face Recognition via Compact Second-Order Image Gradient Orientations
Abstract
:1. Introduction
- 1.
- We find that SOIGO is more robust to variations in face images compared with the first-order IGO. After extracting the SOIGO features of training samples, linear complex PCA is applied to reduce the redundancy of SOIGO.
- 2.
- The classic CRC algorithm is utilized to predict the identity of test samples, and it can further enhance the classification performance of CSOIGO.
- 3.
- Experiments on different scenarios demonstrate the efficacy and robustness of CSOIGO compared with other approaches.
2. Related Work
2.1. IGO-PCA
2.2. Collaborative-Representation-Based Classification
3. Proposed Method
Algorithm 1 CSOIGO |
Input: A set of N training images from C classes, test image , the number of principal components d, and the regularization parameter for CRC. 1. Obtain the SOIGO of training images and convert it to 1D vector . 2. Compute ; all the SOIGO of training images form the matrix . 3. Obtain the projection matrix via Equation (6). 4. For the test image , obtain its SOIGO and convert it to 1D vector ; then, compute . 5. Obtain the embeddings of training and test images via Equation (12). 6. Obtain and by Equation (13). 7. Code over by Equation (8). 8. Compute the regularized residuals . Output:. |
4. Experimental Results and Analysis
4.1. Recognition with Real Disguise
4.2. Comparison with CNN-Based Approaches
4.3. Random Block Occlusion
4.4. Recognition with Mixed Variations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 210–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naseem, I.; Togneri, R.; Bennamoun, M. Linear regression for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 2106–2112. [Google Scholar] [CrossRef] [PubMed]
- Adjabi, I.; Ouahabi, A.; Benzaoui, A.; Jacques, S. Multi-block color-binarized statistical images for single-sample face recognition. Sensors 2021, 21, 728. [Google Scholar] [CrossRef] [PubMed]
- Abdulhussain, S.H.; Mahmmod, B.M.; Flusser, J.; AL-Utaibi, K.A.; Sait, S.M. Fast Overlapping Block Processing Algorithm for Feature Extraction. Symmetry 2022, 14, 715. [Google Scholar] [CrossRef]
- Li, Z.Q.; Sun, J.; Wu, X.J.; Yin, H. Sparsity augmented weighted collaborative representation for image classification. J. Electron. Imaging 2019, 28, 053032. [Google Scholar] [CrossRef]
- Dong, J.; Zheng, H.; Lian, L. Low-rank laplacian-uniform mixed model for robust face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11897–11906. [Google Scholar]
- Yang, J.; Luo, L.; Qian, J.; Tai, Y.; Zhang, F.; Xu, Y. Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 156–171. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Wu, X.J.; Kittler, J. A sparse regularized nuclear norm based matrix regression for face recognition with contiguous occlusion. Pattern Recognit. Lett. 2019, 125, 494–499. [Google Scholar] [CrossRef]
- Chen, J.; Yi, Z. Sparse representation for face recognition by discriminative low-rank matrix recovery. J. Vis. Commun. Image Represent. 2014, 25, 763–773. [Google Scholar] [CrossRef]
- Liu, G.; Lin, Z.; Yan, S.; Sun, J.; Yu, Y.; Ma, Y. Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.; Yang, J.; Jing, X.Y.; Shen, F.; Yang, W.; Yue, D. Learning robust and discriminative low-rank representations for face recognition with occlusion. Pattern Recognit. 2017, 66, 129–143. [Google Scholar] [CrossRef]
- Hu, Z.; Gao, G.; Gao, H.; Wu, S.; Zhu, D.; Yue, D. Robust Face Recognition Via Dual Nuclear Norm Low-rank Representation and Self-representation Induced Classifier. In Proceedings of the 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), Nanjing, China, 23–25 November 2018; pp. 920–924. [Google Scholar]
- Yang, S.; Zhang, L.; He, L.; Wen, Y. Sparse low-rank component-based representation for face recognition with low-quality images. IEEE Trans. Inf. Forensics Secur. 2018, 14, 251–261. [Google Scholar] [CrossRef]
- Yang, S.; Wen, Y.; He, L.; Zhou, M.; Abusorrah, A. Sparse Individual Low-Rank Component Representation for Face Recognition in the IoT-Based System. IEEE Internet Things J. 2021, 8, 17320–17332. [Google Scholar] [CrossRef]
- Xia, H.; Feng, G.; Cai, J.X.; Tang, X.; Chi, H. Embedded conformal deep low-rank auto-encoder network for matrix recovery. Pattern Recognit. Lett. 2020, 132, 38–45. [Google Scholar] [CrossRef]
- Wu, C.Y.; Ding, J.J. Occluded face recognition using low-rank regression with generalized gradient direction. Pattern Recognit. 2018, 80, 256–268. [Google Scholar] [CrossRef] [Green Version]
- Li, X.X.; Hao, P.; He, L.; Feng, Y. Image gradient orientations embedded structural error coding for face recognition with occlusion. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 2349–2367. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, Y.Y.; Fang, B.; Shang, Z.; Liu, X. Face recognition under varying illumination using gradientfaces. IEEE Trans. Image Process. 2009, 18, 2599–2606. [Google Scholar] [CrossRef]
- Tzimiropoulos, G.; Zafeiriou, S.; Pantic, M. Subspace learning from image gradient orientations. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2454–2466. [Google Scholar] [CrossRef] [Green Version]
- Vu, N.S. Exploring patterns of gradient orientations and magnitudes for face recognition. IEEE Trans. Inf. Forensics Secur. 2012, 8, 295–304. [Google Scholar] [CrossRef]
- Zheng, Q.; Wang, Y.; Heng, P.A. Online Subspace Learning from Gradient Orientations for Robust Image Alignment. IEEE Trans. Image Process. 2019, 28, 3383–3394. [Google Scholar] [CrossRef]
- Qian, J.; Yang, J.; Xu, Y.; Xie, J.; Lai, Z.; Zhang, B. Image decomposition based matrix regression with applications to robust face recognition. Pattern Recognit. 2020, 102, 107204. [Google Scholar] [CrossRef]
- Wu, Q.; Zhu, S. Multispectral Image Matching Method Based on Histogram of Maximum Gradient and Edge Orientation. IEEE Geosci. Remote. Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Huang, D.; Zhu, C.; Wang, Y.; Chen, L. HSOG: A novel local image descriptor based on histograms of the second-order gradients. IEEE Trans. Image Process. 2014, 23, 4680–4695. [Google Scholar] [CrossRef] [Green Version]
- Morgan, M.J. Features and the primal sketch. Vis. Res. 2011, 51, 738–753. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Gao, G.; Liu, Z.; Huang, D.; Xi, J. Defect detection for patterned fabric images based on GHOG and low-rank decomposition. IEEE Access 2019, 7, 83962–83973. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, X.; Yan, J.; Xiao, Y.; Chatwin, C.R.; Young, R.; Birch, P. No-reference image quality assessment based on multi-order gradients statistics. J. Imaging Sci. Technol. 2020, 64, 10505-1. [Google Scholar] [CrossRef]
- Bastian, B.T.; Jiji, C. Pedestrian detection using first-and second-order aggregate channel features. Int. J. Multimed. Inf. Retr. 2019, 8, 127–133. [Google Scholar] [CrossRef]
- Abdulhussain, S.H.; Ramli, A.R.; Hussain, A.J.; Mahmmod, B.M.; Jassim, W.A. Orthogonal polynomial embedded image kernel. In Proceedings of the International Conference on Information and Communication Technology, Nanning, China, 11–13 January 2019; pp. 215–221. [Google Scholar]
- Chen, J.; Huang, D.; Zhu, X.; Chen, F. Gradient-Guided and Multi-Scale Feature Network for Image Super-Resolution. Appl. Sci. 2022, 12, 2935. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, M.; Feng, X. Sparse representation or collaborative representation: Which helps face recognition? In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–11 November 2011; pp. 471–478. [Google Scholar]
- Gou, J.; He, X.; Lu, J.; Ma, H.; Ou, W.; Yuan, Y. A class-specific mean vector-based weighted competitive and collaborative representation method for classification. Neural Netw. 2022, 150, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Gou, J.; Sun, L.; Du, L.; Ma, H.; Xiong, T.; Ou, W.; Zhan, Y. A representation coefficient-based k-nearest centroid neighbor classifier. Expert Syst. Appl. 2022, 194, 116529. [Google Scholar] [CrossRef]
- Gou, J.; Yuan, X.; Du, L.; Xia, S.; Yi, Z. Hierarchical Graph Augmented Deep Collaborative Dictionary Learning for Classification. IEEE Trans. Intell. Transp. Syst. 2022. [Google Scholar] [CrossRef]
- Maaten, L.v.d.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- He, R.; Zheng, W.S.; Tan, T.; Sun, Z. Half-quadratic-based iterative minimization for robust sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 36, 261–275. [Google Scholar]
- Qian, J.; Luo, L.; Yang, J.; Zhang, F.; Lin, Z. Robust nuclear norm regularized regression for face recognition with occlusion. Pattern Recognit. 2015, 48, 3145–3159. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Zhang, L.; Zuo, W.; Feng, X. A probabilistic collaborative representation based approach for pattern classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2950–2959. [Google Scholar]
- Iliadis, M.; Wang, H.; Molina, R.; Katsaggelos, A.K. Robust and low-rank representation for fast face identification with occlusions. IEEE Trans. Image Process. 2017, 26, 2203–2218. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, H.; Chen, C.; Qian, Y.; Zhou, X. Enhanced group sparse regularized nonconvex regression for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 2438–2452. [Google Scholar] [CrossRef]
- Zhang, C.; Li, H.; Qian, Y.; Chen, C.; Zhou, X. Locality-constrained discriminative matrix regression for robust face identification. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 1254–1268. [Google Scholar] [CrossRef]
- Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep face recognition. In Proceedings of the British Machine Vision Conference, Swansea, UK, 7–11 September 2015. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Wu, X.; He, R.; Sun, Z. A lightened cnn for deep face representation. arXiv 2015, arXiv:1511.02683. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- Mehdipour Ghazi, M.; Kemal Ekenel, H. A comprehensive analysis of deep learning based representation for face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, USA, 27–30 June 2016; pp. 34–41. [Google Scholar]
Methods | Sunglasses | Scarf | Overall | ||
---|---|---|---|---|---|
Session 1 | Session 2 | Session 1 | Session 2 | ||
HQPAMI [36] | 56.67 | 38.00 | 38.00 | 22.33 | 38.75 |
NR [37] | 28.33 | 16.67 | 29.67 | 17.33 | 23.00 |
ProCRC [38] | 53.07 | 31.00 | 18.67 | 7.33 | 27.52 |
F-LR-IRNNLS [39] | 88.67 | 60.33 | 67.00 | 49.67 | 66.42 |
EGSNR [40] | 84.00 | 54.00 | 70.33 | 48.33 | 64.16 |
LDMR [41] | 68.33 | 45.67 | 59.67 | 34.00 | 51.92 |
GD-HASLR [16] | 92.00 | 66.67 | 82.67 | 58.67 | 75.00 |
IGO-PCA-NNC [19] | 89.00 (99) | 69.00 (99) | 73.33 (97) | 53.33 (96) | 71.17 |
IGO-PCA-CRC | 93.00 (85) | 74.33 (92) | 81.67 (88) | 58.33 (95) | 76.83 |
SOIGO-PCA-NNC | 88.67 (92) | 73.33 (96) | 80.33 (99) | 61.00 (88) | 75.83 |
CSOIGO | 92.67 (89) | 76.67 (93) | 83.33 (75) | 65.33 (99) | 79.50 |
Methods | Sunglasses | Scarf | Overall | ||
---|---|---|---|---|---|
Session 1 | Session 2 | Session 1 | Session 2 | ||
HQPAMI [36] | 61.33 | 59.33 | 44.67 | 48.00 | 53.33 |
NR [37] | 34.00 | 33.33 | 33.00 | 35.67 | 34.00 |
ProCRC [38] | 53.00 | 54.67 | 18.00 | 17.67 | 35.84 |
F-LR-IRNNLS [39] | 90.33 | 87.67 | 78.67 | 76.00 | 83.17 |
EGSNR [40] | 88.00 | 89.33 | 80.00 | 73.00 | 82.58 |
LDMR [41] | 71.00 | 63.67 | 64.00 | 61.00 | 64.92 |
GD-HASLR [16] | 93.00 | 93.33 | 82.67 | 84.00 | 88.25 |
IGO-PCA-NNC [19] | 93.00 (182) | 91.67 (191) | 78.00 (199) | 74.00 (193) | 84.17 |
IGO-PCA-CRC | 96.00 (128) | 95.33 (116) | 85.00 (190) | 84.00 (160) | 90.08 |
SOIGO-PCA-NNC | 96.33 (187) | 92.67 (197) | 86.33 (166) | 83.67 (189) | 89.75 |
CSOIGO | 97.33 (144) | 95.67 (124) | 86.00 (119) | 85.67 (198) | 91.17 |
Methods | Sunglasses | Scarf | Overall | ||
---|---|---|---|---|---|
Session 1 | Session 2 | Session 1 | Session 2 | ||
VGGFace FC6 [42] | 54.00 | 45.00 | 91.67 | 88.00 | 69.67 |
VGGFace FC7 [42] | 45.67 | 40.00 | 88.67 | 84.00 | 64.59 |
Lightened CNN (A) [44] | 67.33 | 56.00 | 87.00 | 82.33 | 73.17 |
Lightened CNN (B) [44] | 36.33 | 31.33 | 80.67 | 73.67 | 55.50 |
GD-HASLR [16] | 92.00 | 66.67 | 82.67 | 58.67 | 75.00 |
IGO-PCA-NNC [19] | 89.00 (99) | 69.00 (99) | 73.33 (97) | 53.33 (96) | 71.17 |
IGO-PCA-CRC | 93.00 (85) | 74.33 (92) | 81.67 (88) | 58.33 (95) | 76.83 |
SOIGO-PCA-NNC | 88.67 (92) | 73.33 (96) | 80.33 (99) | 61.00 (88) | 75.83 |
CSOIGO | 92.67 (89) | 76.67 (93) | 83.33 (75) | 65.33 (99) | 79.50 |
Methods | Sunglasses | Scarf | Overall | ||
---|---|---|---|---|---|
Session 1 | Session 2 | Session 1 | Session 2 | ||
VGGFace FC6 [42] | 44.67 | 51.00 | 91.67 | 93.33 | 70.17 |
VGGFace FC7 [42] | 41.67 | 44.67 | 88.67 | 89.33 | 66.08 |
Lightened CNN (A) [44] | 64.67 | 58.33 | 86.67 | 85.33 | 73.75 |
Lightened CNN (B) [44] | 38.67 | 38.00 | 81.67 | 79.33 | 59.42 |
GD-HASLR [16] | 93.00 | 93.33 | 82.67 | 84.00 | 88.25 |
IGO-PCA-NNC [19] | 93.00 (182) | 91.67 (191) | 78.00 (199) | 74.00 (193) | 84.17 |
IGO-PCA-CRC | 96.00 (128) | 95.33 (116) | 85.00 (190) | 84.00 (160) | 90.08 |
SOIGO-PCA-NNC | 96.33 (187) | 92.67 (197) | 86.33 (166) | 83.67 (189) | 89.75 |
CSOIGO | 97.33 (144) | 95.67 (124) | 86.00 (119) | 85.67 (198) | 91.17 |
Occlusion Percentage | 30% | 40% | 50% |
---|---|---|---|
GD-HASLR [16] | 81.29 | 71.14 | 56.14 |
IGO-PCA-NNC [19] | 86.14 (588) | 80.57 (606) | 66.29 (321) |
IGO-PCA-CRC | 89.14 (205) | 80.14 (185) | 71.29 (569) |
SOIGO-PCA-NNC | 88.86 (458) | 84.57 (575) | 73.29 (693) |
CSOIGO | 93.57 (423) | 87.00 (533) | 76.57 (698) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, H.-F.; Wu, X.-J.; Hu, C.; Song, X. Face Recognition via Compact Second-Order Image Gradient Orientations. Mathematics 2022, 10, 2587. https://doi.org/10.3390/math10152587
Yin H-F, Wu X-J, Hu C, Song X. Face Recognition via Compact Second-Order Image Gradient Orientations. Mathematics. 2022; 10(15):2587. https://doi.org/10.3390/math10152587
Chicago/Turabian StyleYin, He-Feng, Xiao-Jun Wu, Cong Hu, and Xiaoning Song. 2022. "Face Recognition via Compact Second-Order Image Gradient Orientations" Mathematics 10, no. 15: 2587. https://doi.org/10.3390/math10152587
APA StyleYin, H. -F., Wu, X. -J., Hu, C., & Song, X. (2022). Face Recognition via Compact Second-Order Image Gradient Orientations. Mathematics, 10(15), 2587. https://doi.org/10.3390/math10152587