Support Vector Machine with Robust Low-Rank Learning for Multi-Label Classification Problems in the Steelmaking Process
Abstract
:1. Introduction
- We present a novel multi-label classification model called the support vector machine with robust low-rank learning (SVM-RL) and derive a kernelization SVM-RL to capture nonlinear relationships between the input and output.
- In the kernel classifier case, the surrogate least-squares hinge loss is replaced with a margin-based loss to make it smooth for efficient optimization. It is expected that this will result in avoiding some of the over-fitting problems that may be encountered, and it is used as an intermediate step to discover the structure of a dataset.
- A multi-label classification problem is derived from the practical steelmaking process, which has a black-box property. The proposed approach effectively solves this difficulty, and different benchmark problems are used to verify the performance of SVM-RL.
2. Related Literature
3. Problem Formulation and Optimization
Algorithm 1: Accelerated Proximal Gradient Method for Equation (5) | |
Input: the kernel matrix tradeoff hyper-parameters . | |
Output: . | |
1 | Initialize Define the smooth function |
2 | Initialize as zero matrix. |
3 | while (3) not converge do |
4 | Compute the gradient of . |
5 | . |
6 | . |
7 | . |
8 | . |
9 | Until the KKT conditions of all SVM models are satisfied |
10 | end |
11 | . |
4. Numerical Results
4.1. Experimental Details
4.1.1. Experimental Setting
- Experimental platform: The experiment was performed on a computer with an Intel® Core™ i5-9400f 2.90 GHz CPU, 16 GB RAM and NVIDIA GeForce GRX 1060 6 GB GPU, with a 64-bit Windows 11 operating system. The software was developed using Matlab2016.
- Parameter setup: Grid searching was used to find the model parameters in this paper. The parameters were as follows: λ1, λ3, . A total of 60 percent of each dataset was chosen at random as training data, while the remaining 40 percent was used as test data. To avoid aberrant interference, each dataset was subjected to 10 independent experiments, with the results being averaged.
4.1.2. Evaluation Metrics
- Single-label classification indicators: to assess the model’s performance, we employed Precision, Recall, F1-Score, and Accuracy as indicators; Table 1 is the confusion matrix of single-label classification.
- “Precision” indicates the fraction of predicted condition positive to total prediction condition positive:
- 2.
- “Recall” indicates the fraction of predicted condition positive to total condition positive:
- 3.
- “F1-Score” is a combination of two contradictory indicators. They are the accuracy rate and the recall rate:
- 4.
- “Accuracy” is the overall categorization index, the number of valid classifications:
- Multi-label classification indicators to assess the following: Hamming Loss, Subset Accuracy, F1-Example, Ranking Loss, Coverage, Average Precision [26] as the multi-classification problem evaluation index. Assuming a given test dataset , f(xi) denotes each of the multi-label classifier prediction label sets for xi, and q is the label count.
- Hamming Loss (Hal) calculates the binary average error ratio of Tags. denotes the l1-norm.
- Ranking Loss (Ral) calculates the ratio of reverse labels.
- Coverage (Cov) calculates the number steps it takes to progress down the label sort until all the fundamental real tags are covered.
- Subset Accuracy (Sa) calculates the ratio of the predicted label subset that matches the actual data label. F(xi) is the total multi-label classifier prediction label set for xi.
- F1-Example (F1e) indicates the average of F1-Score for each instance.
- Average Precision (Ap) calculates the average score of related labels above that of a particular label.
4.2. Multi-Label Classification Problems in the Steelmaking Process
4.2.1. Experimental Data and Settings
4.2.2. Experimental Results
4.2.3. Sensitivity Analysis
4.3. Benchmark Test Problems
4.3.1. Benchmark Dataset
4.3.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Tang, L.; Liu, J. A stacked autoencoder with sparse Bayesian regression for end-point prediction problems in steelmaking process. IEEE Trans. Autom. Sci. Eng. 2019, 17, 550–561. [Google Scholar] [CrossRef]
- Liu, C.; Tang, L.; Liu, J.; Tang, Z. A Dynamic Analytics Method Based on Multistage Modeling for a BOF Steelmaking Process. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1097–1109. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.L.C.; Liu, J.; Wang, X. An estimation of distribution algorithm with resampling and local improvement for an operation optimization problem in steelmaking process. IEEE Trans. Syst. Man Cybern. Syst. 2020; in press. [Google Scholar]
- Liu, C.; Tang, L.; Liu, J. Least squares support vector machine with self-organizing multiple kernel learning and sparsity. Neurocomputing 2019, 331, 493–504. [Google Scholar] [CrossRef] [Green Version]
- Azadi, P.; Winz, J.; Leo, E.; Klock, R.; Engell, S. A hybrid dynamic model for the prediction of molten iron and slag quality indices of a large-scale blast furnace. Comput. Chem. Eng. 2022, 156, 107573. [Google Scholar] [CrossRef]
- Cardoso, W.; Di Felice, R. A novel committee machine to predict the quantity of impurities in hot metal produced in blast furnace. Comput. Chem. Eng. 2022, 163, 107814. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, C.-J.; Wang, L.; Zhang, Y.-C. Industrial IoT for intelligent steelmaking with converter mouth flame spectrum information processed by deep learning. IEEE Trans. Ind. Inform. 2019, 16, 2640–2650. [Google Scholar] [CrossRef]
- Saigo, H.; Kc, D.B.; Saito, N. Einstein-Roscoe regression for the slag viscosity prediction problem in steelmaking. Sci. Rep. 2022, 12, 6541. [Google Scholar] [CrossRef]
- Deng, A.; Xia, Y.; Dong, H.; Wang, H.; Fan, D. Prediction of re-oxidation behaviour of ultra-low carbon steel by different slag series. Sci. Rep. 2020, 10, 9423. [Google Scholar] [CrossRef]
- Gao, D.; Zhu, X.Z.; Yang, C.; Huang, X.; Wang, W. Deep weighted joint distribution adaption network for fault diagnosis of blast furnace ironmaking process. Comput. Chem. Eng. 2022, 162, 107797. [Google Scholar] [CrossRef]
- Li, J.; Wei, X.; Hua, C.; Yang, Y.; Zhang, L. Double-hyperplane fuzzy classifier design for tendency prediction of silicon content in molten iron. Fuzzy Sets Syst. 2022, 426, 163–175. [Google Scholar] [CrossRef]
- Rippon, L.D.; Yousef, I.; Hosseini, B.; Bouchoucha, A.; Beaulieu, J.-F.; Prévost, C.; Ruel, M.; Shah, S.; Gopaluni, R.B. Representation learning and predictive classification: Application with an electric arc furnace. Comput. Chem. Eng. 2021, 150, 107304. [Google Scholar] [CrossRef]
- Zhang, C.-J.; Zhang, Y.-C.; Han, Y. Industrial cyber-physical system driven intelligent prediction model for converter end carbon content in steelmaking plants. J. Ind. Inf. Integr. 2022, 28, 100356. [Google Scholar] [CrossRef]
- Zhou, P.; Gao, B.; Wang, S.; Chai, T. Identification of Abnormal Conditions for Fused Magnesium Melting Process Based on Deep Learning and Multisource Information Fusion. IEEE Trans. Ind. Electron. 2021, 69, 3017–3026. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, R.; Xie, J.; Liu, J.; Wang, H.; Chai, T. Data-driven monitoring and diagnosing of abnormal furnace conditions in blast furnace ironmaking: An integrated PCA-ICA method. IEEE Trans. Ind. Electron. 2020, 68, 622–631. [Google Scholar] [CrossRef]
- Feng, L.; Zhao, C.; Li, Y.; Zhou, M.; Qiao, H.; Fu, C. Multichannel diffusion graph convolutional network for the prediction of endpoint composition in the converter steelmaking process. IEEE Trans. Instrum. Meas. 2020, 70, 3000413. [Google Scholar] [CrossRef]
- Li, J.; Hua, C.; Qian, J.; Guan, X. Low-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnace. Fuzzy Sets Syst. 2021, 421, 178–192. [Google Scholar] [CrossRef]
- Vannucci, M.; Colla, V.; Chini, M.; Gaspardo, D.; Palm, B. Artificial Intelligence Approaches for the Ladle Predictive Maintenance in Electric Steel Plant. IFAC-PapersOnLine 2022, 55, 331–336. [Google Scholar] [CrossRef]
- Zhou, P.; Xu, Z.; Peng, X.; Zhao, J.; Shao, Z. Long-term prediction enhancement based on multi-output Gaussian process regression integrated with production plans for oxygen supply network. Comput. Chem. Eng. 2022, 107844. [Google Scholar] [CrossRef]
- Zou, H. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhu, J.; Zou, H. The doubly regularized support vector machine. Stat. Sin. 2006, 589–615. [Google Scholar]
- Zou, H. An improved 1-norm svm for simultaneous classification and variable selection. In Proceedings of the Artificial Intelligence and Statistics, San Juan, Puerto Rico, 21–24 March 2007; pp. 675–681. [Google Scholar]
- Zou, H.; Yuan, M. The F∞-norm support vector machine. Stat. Sin. 2008, 18, 379–398. [Google Scholar]
- Elisseeff, A.; Weston, J. A kernel method for multi-labelled classification. Adv. Neural Inf. Process. Syst. 2001, 14, 681–687. [Google Scholar]
- Wang, B.; Zou, H. Fast and Exact Leave-One-Out Analysis of Large-Margin Classifiers. Technometrics 2021, 1–8. [Google Scholar] [CrossRef]
- Wu, X.-Z.; Zhou, Z.-H. A unified view of multi-label performance measures. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 10–11 August 2017; pp. 3780–3788. [Google Scholar]
- Wu, G.; Zheng, R.; Tian, Y.; Liu, D. Joint ranking SVM and binary relevance with robust low-rank learning for multi-label classification. Neural Netw. 2020, 122, 24–39. [Google Scholar] [CrossRef] [Green Version]
- Xu, J. An efficient multi-label support vector machine with a zero label. Expert Syst. Appl. 2012, 39, 4796–4804. [Google Scholar] [CrossRef]
- Boutell, M.R.; Luo, J.; Shen, X.; Brown, C.M. Learning multi-label scene classification. Pattern Recognit. 2004, 37, 1757–1771. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.-L.; Zhou, Z.-H. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognit. 2007, 40, 2038–2048. [Google Scholar] [CrossRef] [Green Version]
- Fürnkranz, J.; Hüllermeier, E.; Loza Mencía, E.; Brinker, K. Multilabel classification via calibrated label ranking. Mach. Learn. 2008, 73, 133–153. [Google Scholar] [CrossRef] [Green Version]
- Tsoumakas, G.; Katakis, I.; Vlahavas, I. Random k-labelsets for multilabel classification. IEEE Trans. Knowl. Data Eng. 2010, 23, 1079–1089. [Google Scholar] [CrossRef]
- Wu, G.; Tian, Y.; Liu, D. Cost-sensitive multi-label learning with positive and negative label pairwise correlations. Neural Netw. 2018, 108, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-W.; Zhong, Y.; Zhang, M.-L. Feature-induced labeling information enrichment for multi-label learning. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
Total Population | Predicted Condition Positive | Predicted Condition Negative | |
---|---|---|---|
True Condition | Condition Positive | True Positive (TP) | False Negative (FN) |
Condition Negative | False Positive (FP) | True Negative (TN) |
15 °C | Precision | Recall | F1-Score | Accuracy | |
---|---|---|---|---|---|
RBRL | −1 | 0.92 | 0.80 | 0.86 | 0.77 |
1 | 0.30 | 0.55 | 0.39 | ||
SVM | −1 | 0.98 | 0.78 | 0.87 | 0.78 |
1 | 0.16 | 0.71 | 0.26 | ||
SVM-RL | −1 | 1.00 | 1.00 | 1.00 | 1.00 |
1 | 1.00 | 1.00 | 1.00 | ||
10°C | Precision | Recall | F1-Score | Accuracy | |
RBRL | −1 | 0.41 | 0.64 | 0.50 | 0.58 |
1 | 0.71 | 0.49 | 0.57 | ||
SVM | −1 | 0.47 | 0.66 | 0.55 | 0.57 |
1 | 0.68 | 0.51 | 0.58 | ||
SVM-RL | −1 | 1.00 | 0.74 | 0.85 | 0.80 |
1 | 0.55 | 1.00 | 0.71 |
Dataset | Instance | Feature | Label | Cardinality | Density | Domain |
---|---|---|---|---|---|---|
Emotions | 593 | 72 | 6 | 1.869 | 0.331 | music |
Image | 2000 | 294 | 5 | 1.240 | 0.248 | image |
Scene | 2407 | 294 | 6 | 1.074 | 0.179 | image |
Yeast | 2417 | 103 | 14 | 4.239 | 0.303 | biology |
Metric | Rank-SVM | Rank-SVMs | BR | ML-kNN | CLR | RAKEL | CPNL | MLFE | RBRL | SVM-RL | |
---|---|---|---|---|---|---|---|---|---|---|---|
emotions | Hal | 0.189 | 0.201 | 0.183 | 0.200 | 0.182 | 0.177 | 0.183 | 0.186 | 0.181 | 0.167 |
Ral | 0.155 | 0.149 | 0.246 | 0.169 | 0.149 | 0.192 | 0.139 | 0.142 | 0.138 | 0.133 | |
Cov | 0.294 | 0.291 | 0.386 | 0.306 | 0.283 | 0.338 | 0.277 | 0.282 | 0.277 | 0.284 | |
Sa | 0.291 | 0.292 | 0.313 | 0.285 | 0.318 | 0.356 | 0.324 | 0.291 | 0.334 | 0.361 | |
F1e | 0.645 | 0.675 | 0.620 | 0.605 | 0.624 | 0.679 | 0.684 | 0.621 | 0.666 | 0.682 | |
Ap | 0.808 | 0.819 | 0.760 | 0.796 | 0.813 | 0.801 | 0.828 | 0.822 | 0.828 | 0.835 | |
image | Hal | 0.161 | 0.177 | 0.156 | 0.175 | 0.157 | 0.154 | 0.150 | 0.156 | 0.149 | 0.075 |
Ral | 0.143 | 0.142 | 0.220 | 0.180 | 0.144 | 0.173 | 0.132 | 0.142 | 0.133 | 0.072 | |
Cov | 0.171 | 0.170 | 0.227 | 0.198 | 0.168 | 0.191 | 0.157 | 0.165 | 0.160 | 0.115 | |
Sa | 0.451 | 0.411 | 0.482 | 0.393 | 0.477 | 0.527 | 0.533 | 0.463 | 0.552 | 0.686 | |
F1e | 0.631 | 0.670 | 0.623 | 0.503 | 0.627 | 0.680 | 0.698 | 0.593 | 0.688 | 0.815 | |
Ap | 0.823 | 0.826 | 0.772 | 0.786 | 0.826 | 0.813 | 0.839 | 0.826 | 0.836 | 0.930 | |
scene | Hal | 0.092 | 0.113 | 0.077 | 0.091 | 0.078 | 0.075 | 0.077 | 0.083 | 0.073 | 0.0884 |
Ral | 0.065 | 0.072 | 0.128 | 0.083 | 0.061 | 0.087 | 0.059 | 0.063 | 0.058 | 0.047 | |
Cov | 0.068 | 0.075 | 0.119 | 0.084 | 0.064 | 0.089 | 0.064 | 0.067 | 0.062 | 0.055 | |
Sa | 0.563 | 0.500 | 0.655 | 0.615 | 0.650 | 0.696 | 0.699 | 0.617 | 0.735 | 0.541 | |
F1e | 0.664 | 0.756 | 0.717 | 0.678 | 0.718 | 0.756 | 0.802 | 0.685 | 0.803 | 0.595 | |
Ap | 0.882 | 0.874 | 0.834 | 0.858 | 0.887 | 0.875 | 0.893 | 0.885 | 0.895 | 0.905 | |
yeast | Hal | 0.203 | 0.207 | 0.188 | 0.195 | 0.188 | 0.195 | 0.192 | 0.194 | 0.187 | 0.184 |
Ral | 0.170 | 0.172 | 0.308 | 0.170 | 0.158 | 0.244 | 0.158 | 0.166 | 0.157 | 0.134 | |
Cov | 0.446 | 0.458 | 0.627 | 0.451 | 0.436 | 0.543 | 0.445 | 0.452 | 0.436 | 0.412 | |
Sa | 0.156 | 0.179 | 0.190 | 0.177 | 0.194 | 0.248 | 0.179 | 0.172 | 0.192 | 0.077 | |
F1e | 0.632 | 0.643 | 0.623 | 0.615 | 0.625 | 0.647 | 0.630 | 0.607 | 0.628 | 0.635 | |
Ap | 0.755 | 0.765 | 0.680 | 0.762 | 0.773 | 0.727 | 0.775 | 0.769 | 0.777 | 0.814 | |
Score | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 4 | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Liu, C.; Guo, Q. Support Vector Machine with Robust Low-Rank Learning for Multi-Label Classification Problems in the Steelmaking Process. Mathematics 2022, 10, 2659. https://doi.org/10.3390/math10152659
Li Q, Liu C, Guo Q. Support Vector Machine with Robust Low-Rank Learning for Multi-Label Classification Problems in the Steelmaking Process. Mathematics. 2022; 10(15):2659. https://doi.org/10.3390/math10152659
Chicago/Turabian StyleLi, Qiang, Chang Liu, and Qingxin Guo. 2022. "Support Vector Machine with Robust Low-Rank Learning for Multi-Label Classification Problems in the Steelmaking Process" Mathematics 10, no. 15: 2659. https://doi.org/10.3390/math10152659
APA StyleLi, Q., Liu, C., & Guo, Q. (2022). Support Vector Machine with Robust Low-Rank Learning for Multi-Label Classification Problems in the Steelmaking Process. Mathematics, 10(15), 2659. https://doi.org/10.3390/math10152659