An Orchestration Perspective on Open Innovation between Industry–University: Investigating Its Impact on Collaboration Performance
Abstract
:1. Introduction
2. Theoretical Framework and Hypotheses Development
2.1. Background
2.2. Development of Hypotheses
3. Research Approach
3.1. Research Model and Its Hierarchical Constructs
3.2. Study Setting: Participants and Data Collection
3.3. Data Analysis Method
4. Results
4.1. The PLS-SEM Analysis
4.1.1. Assessing the Measurement Model
4.1.2. Assessing the Structural Model
4.2. The ANN Analysis
5. Discussion and Implications
5.1. Theoretical Implications
5.2. Practical Implications
6. Concluding Remarks: Summary, Limitations, and Future Research
6.1. Summary of Findings
6.2. Limitations and Future Research Suggestions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pénin, J.; Neicu, D. Patents and Open Innovation: Bad Fences Do Not Make Good Neighbors. J. Innov. Econ. Manag. 2018, 25, 57–85. [Google Scholar] [CrossRef]
- Dahlander, L.; Gann, D.M.; Wallin, M.W. How open is innovation? A retrospective and ideas forward. Res. Policy 2021, 50, 104218. [Google Scholar] [CrossRef]
- Chesbrough, H.; Bogers, M. Explicating open innovation: Clarifying an emerging paradigm for understanding innovation. In New Frontiers in Open Innovation; Chesbrough, H., Vanhaverbeke, W., West, J., Eds.; Oxford University Press: Oxford, UK, 2014; pp. 3–28. [Google Scholar]
- West, J.; Bogers, M. Open innovation: Current status and research opportunities. Innov. Manag. Policy Pract. 2017, 19, 43–50. [Google Scholar] [CrossRef]
- Randhawa, K.; Wilden, R.; Hohberger, J. A Bibliometric review of open Innovation: Setting a research agenda. J. Prod. Innov. Manag. 2016, 33, 750–772. [Google Scholar] [CrossRef]
- West, J.; Bogers, M. Leveraging external sources of innovation: A review of research on open innovation. J. Prod. Innov. Manag. 2014, 31, 814–831. [Google Scholar] [CrossRef]
- Carayannis, E.G.; Campbell, D.F.J. Open innovation diplomacy and a 21st century fractal research, education and innovation (FREIE) ecosystem: Building on the Quadruple and Quintuple Helix innovation concepts and the “Mode 3” knowledge production system. J. Knowl. Econ. 2011, 2, 327–372. [Google Scholar] [CrossRef]
- D’Auria, A.; Tregua, M.; Spena, T.R.; Bifulco, F. Multiple context of innovation: Insights from literature. Int. J. Innov. Technol. Manag. 2017, 14, 1740007. [Google Scholar] [CrossRef] [Green Version]
- De Silva, M.; Howells, J.; Meyer, M. Innovation intermediaries and collaboration: Knowledge–based practices and internal value creation. Res. Policy 2018, 47, 70–87. [Google Scholar] [CrossRef]
- Fan-Chuan, T.; Huang, M.-H.; Chen, D. Factors of university–industry collaboration affecting university innovation performance. J. Technol. Transf. 2020, 45, 560–577. [Google Scholar]
- Galán-Muros, V.; Plewa, C. What drives and inhibits university-business cooperation in Europe? A comprehensive assessment. RD Manag. 2016, 46, 369–382. [Google Scholar]
- Skute, I.; Zalewska-Kurek, K.; Hatak, I.; de Weerd-Nederhof, P. Mapping the field: A bibliometric analysis of the literature on university–industry collaborations. J. Technol. Transf. 2019, 44, 916–947. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, C.; Fassio, C. The role of external knowledge(s) in the introduction of product and process innovations. RD Manag. 2015, 46, 979–991. [Google Scholar]
- Huggins, R.; Johnston, A.; Stride, C. Knowledge networks and universities: Locational and organisational aspects of knowledge transfer interactions. Entrep. Reg. Dev. 2012, 24, 475–502. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Wang, H. How can open innovation ecosystem modes push product innovation forward? An fsQCA analysis. J. Bus. Res. 2020, 108, 29–41. [Google Scholar] [CrossRef]
- Carayannis, E.G.; Barth, T.D.; Campbell, D.F. The Quintuple Helix innovation model: Global warming as a challenge and driver for innovation. J. Innov. Entrep. 2012, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Fischer, B.B.; Schaeffer, P.R.; Vonortas, N.S. Evolution of university-industry collaboration in Brazil from a technology upgrading perspective. Technol. Forecast. Soc. Change 2019, 145, 330–340. [Google Scholar] [CrossRef]
- De las Heras-Rosas, C.; Herrera, J. Research Trends in Open Innovation and the Role of the University. J. Open Innov. Technol. Mark. Complex. 2021, 7, 29. [Google Scholar] [CrossRef]
- Scandura, A. University-industry collaboration and firms’ R&D effort. Res. Policy 2016, 45, 1907–1922. [Google Scholar]
- Ankrah, S.; AL-Tabbaa, O. Universities-industry collaboration: A systematic review. Scand. J. Manag. 2015, 31, 387–408. [Google Scholar] [CrossRef]
- Mascarenhas, C.; Ferreira, J.J.; Marques, C. University–industry cooperation: A systematic literature review and research agenda. Sci. Public Policy 2018, 45, 708–718. [Google Scholar] [CrossRef] [Green Version]
- Striukova, L.; Rayna, T. University-industry knowledge exchange: An exploratory study of open innovation in UK universities. Eur. J. Innov. Manag. 2015, 18, 471–492. [Google Scholar] [CrossRef]
- Gallaud, D.; Nayaradou, M. Open Innovation and co-operation: Which choice of means of protection for innovation. J. Innov. Econ. 2012, 10, 167–190. [Google Scholar] [CrossRef]
- Hurmelinna-Laukkanen, P.; Olander, H.; Blomqvist, K.; Panfilii, V. Orchestrating R&D networks: Absorptive capacity, network stability, and innovation appropriability. Eur. Manag. J. 2012, 30, 552–563. [Google Scholar]
- Kindström, D.; Kowalkowski, C.; Sandberg, E. Enabling service innovation: A dynamic capabilities approach. J. Bus. Res. 2013, 66, 1063–1073. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, U. Open innovation: Past research, current debates, and future directions. Acad. Manag. Perspect. 2011, 25, 75–93. [Google Scholar]
- Cheng, C.C.J.; Shiu, E.C. The inconvenient truth of the relationship between open innovation activities and innovation performance. Manag. Decis. 2015, 53, 625–647. [Google Scholar] [CrossRef]
- Moretti, F.; Biancardi, D. Inbound open innovation and firm performance. J. Innov. Knowl. 2020, 5, 1–19. [Google Scholar] [CrossRef]
- Vargo, S.L.; Wieland, H.; Akaka, M.A. Innovation through institutionalization: A service ecosystems perspective. Ind. Mark. Manag. 2015, 44, 63–72. [Google Scholar] [CrossRef]
- Sundbo, J.; Gallouj, F. Innovation as a loosely coupled system in services. Int. J. Serv. Technol. Manag. 2000, 1, 15–36. [Google Scholar] [CrossRef]
- Corsaro, D.; Cantu, C.; Tunisini, A. Actors’ heterogeneity in innovation networks. Ind. Mark. Manag. 2012, 41, 780–789. [Google Scholar] [CrossRef]
- Perkmann, M.; Walsh, K. University-industry relationships and open innovation: Towards a research agenda. Int. J. Manag. Rev. 2007, 9, 259–280. [Google Scholar] [CrossRef]
- Ritala, P.; Armila, L.; Blomqvist, K. Innovation orchestration capability—Defining the organizational and individual level determinants. Int. J. Innov. Manag. 2009, 13, 569–591. [Google Scholar] [CrossRef]
- Hurmelinna-Laukkanen, P.; Möller, K.; Nätti, S. Orchestrating innovation networks: Alignment and orchestration profile approach. J. Bus. Res. 2022, 140, 170–188. [Google Scholar] [CrossRef]
- Milwood, P.A.; Roehl, W.S. Orchestration of innovation networks in collaborative settings. Int. J. Contemp. Hosp. Manag. 2018, 30, 2562–2582. [Google Scholar] [CrossRef]
- Dhanaraj, C.; Parkhe, A. Orchestrating innovation networks. Acad. Manag. Rev. 2006, 31, 659–669. [Google Scholar] [CrossRef] [Green Version]
- Provan, K.G.; Kenis, P.N. Modes of network governance: Structure, management, and effectiveness. J. Public Adm. Res. Theory 2008, 18, 229–252. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Sabatier, V.; Mangematin, V.; Rousselle, T. Orchestrating networks in the biopharmaceutical industry: Small hub firms can do it. Prod. Plan. Control 2010, 21, 218–228. [Google Scholar] [CrossRef]
- Ozeren, E.; Saatcioglu, O.Y.; Aydin, E. Creating social value through orchestration processes in innovation networks: The case of “Garbage Ladies” as a social entrepreneurial venture. J. Organ. Change Manag. 2018, 31, 1206–1224. [Google Scholar] [CrossRef]
- Gausdal, A.H.; Nilsen, E.R. Orchestrating Innovative SME Networks. The Case of “HealthInnovation”. J. Knowl. Econ. 2011, 2, 586–600. [Google Scholar] [CrossRef] [Green Version]
- Levén, P.; Holmstrom, J.; Mathiassen, L. Managing research and innovation networks: Evidence from a government sponsored cross-industry program. Res. Policy 2014, 43, 156–168. [Google Scholar] [CrossRef] [Green Version]
- To, C.K.M. A Quad Model for Assessing Innovation Potential: Toward a Theory of Innovation Orchestration Quality. Int. J. Innov. Stud. 2017, 1, 37–56. [Google Scholar] [CrossRef]
- Hu, Y.; Sorensen, O.J. Open innovation in networks: Specifying orchestration capability for SMEs. Ledelse Erhv. 2012, 77, 7–24. [Google Scholar]
- Schepis, D.; Purchase, S.; Butler, B. Facilitating open innovation processes through network orchestration mechanisms. Ind. Mark. Manag. 2021, 93, 270–280. [Google Scholar] [CrossRef]
- Leydesdorff, L.; Ivanova, I. “Open innovation” and “triple helix” models of innovation: Can synergy in innovation systems be measured? J. Open Innov. 2016, 2, 11. [Google Scholar] [CrossRef] [Green Version]
- Lima, J.C.F.; Torkomian, A.L.V.; Pereira, S.C.F.; Oprime, P.C.; Hashiba, L.H. Socioeconomic impacts of university-industry collaborations-a systematic review and conceptual model. J. Open Innov. Technol. Mark. Complex. 2021, 7, 137. [Google Scholar] [CrossRef]
- Dahlander, L.; Gann, D.M. How open is innovation? Res. Policy 2010, 39, 699–709. [Google Scholar] [CrossRef]
- Bigliardi, B.; Ferraro, G.; Filippelli, S.; Galati, F. The influence of open innovation on firm performance. Int. J. Eng. Bus. Manag. 2020, 12, 1847979020969545. [Google Scholar] [CrossRef]
- Popa, S.; Acosta, P.; Conesa, I. Antecedents, moderators, and outcomes of innovation climate and open innovation: An empirical study in SMEs. Technol. Forecast. Soc. Change 2017, 118, 134–142. [Google Scholar] [CrossRef]
- Galán-Muros, V.; Davey, T. The UBC ecosystem: Putting together a comprehensive framework for university-business cooperation. J. Technol. Transf. 2019, 44, 1311–1346. [Google Scholar] [CrossRef]
- Hurmelinna-Laukkanen, P.; Puumalainen, K. Nature and dynamics of appropriability: Strategies for appropriating returns on innovation. RD Manag. 2007, 37, 95–112. [Google Scholar] [CrossRef]
- Fabrizio, K.R. The Use of University Research in Firm Innovation. In Open Innovation: Researching a New Paradigm; Chesbrough, H., Vanhaverbeke, W., West, J., Eds.; Oxford University Press: Oxford, UK, 2014; pp. 134–160. [Google Scholar]
- Aloini, D.; Lazzarotti, V.; Manzini, R.; Pellegrini, L. IP, openness, and innovation performance: An empirical study. Manag. Decis. 2017, 55, 1307–1327. [Google Scholar] [CrossRef]
- Bican, P.M.; Guderian, C.C.; Ringbeck, A. Managing knowledge in open innovation processes:an intellectual property perspective. J. Knowl. Manag. 2017, 21, 1384–1405. [Google Scholar] [CrossRef]
- Laursen, K.; Salter, A. The paradox of openness: Appropriability, external search and collaboration. Res. Policy 2014, 43, 867–878. [Google Scholar] [CrossRef] [Green Version]
- Pisano, G.P.; Teece, D.J. How to capture value from innovation: Shaping IP and industry architecture. Calif. Manag. Rev. 2007, 50, 278–296. [Google Scholar] [CrossRef]
- Stefan, I.; Hurmelinna, P.; Vanhaverbeke, W.; Oikarinen, E.-L. The dark side of open innovation: Individual affective responses as hidden tolls of the paradox of openness. J. Bus. Res. 2022, 138, 360–373. [Google Scholar] [CrossRef]
- Saka-Helmhout, A.; Ibbott, C.J. Network orchestration: Vodafone’s journey to globalization. In Orchestration of the Global Network Organization; Pedersen, T., Venzin, M., Devinney, T.M., Tihanyi, L., Eds.; Emerald Books: Bingley, UK, 2014; pp. 123–149. [Google Scholar]
- Băban, C.F.; Băban, M.; Rangone, A. Outcomes of Industry—University Collaboration in Open Innovation: An Exploratory Investigation of Their Antecedents’ Impact Based on a PLS-SEM and Soft Computing Approach. Mathematics 2022, 10, 931. [Google Scholar] [CrossRef]
- DiGiovanna, S. Industrial Districts and Regional Economic Development: A Regulation Approach. Reg. Stud. 1996, 30, 373–386. [Google Scholar] [CrossRef]
- Xie, X.; Fang, L.; Zeng, S. Collaborative innovation network and knowledge transfer performance: A fsQCA approach. J. Bus. Res. 2016, 69, 5210–5215. [Google Scholar] [CrossRef]
- Zanni, L.; Aquilani, B.; Magliacani, M. Medium-size enterprises in industrial districts: An exploratory study. EuroMed J. Bus. 2008, 3, 125–143. [Google Scholar] [CrossRef]
- Dodescu, A.; Chirilă, L. Industrial parks in Romania: From success stories to emerging challenges. Int. J. E-Educ. E-Bus. E-Manag. E-Learn. 2012, 2, 331–335. [Google Scholar] [CrossRef] [Green Version]
- Dei Ottati, G. Marshallian industrial districts in Italy: The end of a model or adaptation to the global economy? Camb. J. Econ. 2018, 42, 259–284. [Google Scholar] [CrossRef] [Green Version]
- Baban, C.F.; Baban, M.; Rangone, A. Investigating determinants of industry-university collaboration in an open innovation context: Comparative evidence from an exploratory study. Sci. Technol. Soc. 2021, 26, 482–502. [Google Scholar] [CrossRef]
- Hair, J.; Black, W.; Babin, B.; Anderson, R.; Tatham, R. Multivariate Data Analysis, 8th ed.; Cengage Learning: Hampshire, UK, 2019. [Google Scholar]
- Gefen, D.; Straub, D.; Boudreau, M.-C. Structural Equation Modeling and Regression: Guidelines for Research Practice. Commun. Assoc. Inf. Syst. 2000, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.; Hult, T.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; Sage Publications: Los Angeles, CA, USA, 2017. [Google Scholar]
- Mateos-Aparicio, G. Partial Least Squares (PLS) Methods: Origins, Evolution, and Application to Social Sciences. Commun. Stat. -Theory Methods 2011, 40, 2305–2317. [Google Scholar] [CrossRef] [Green Version]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albahri, A.S.; Alnoor, A.; Zaidan, A.A.; Albahri, O.S.; Hameed, H.; Zaidan, B.B.; Peh, S.S.; Zain, A.B.; Siraj, S.B.; Masnan, A.; et al. Hybrid artificial neural network and structural equation modelling techniques: A survey. Complex Intell. Syst. 2022, 8, 1781–1801. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS 3; SmartPLS GmbH: Boenningstedt, Germany, 2015. [Google Scholar]
- IBM. SPSS Modeler 18 Algorithms Guide. Available online: http://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/18.0/en/AlgorithmsGuide.pdf (accessed on 1 May 2022).
- Becker, J.M.; Klein, K.; Wetzels, M. Hierarchical latent variable models in PLS-SEM: Guidelines for using reflective-formative type models. Long Range Plan. 2012, 45, 359–394. [Google Scholar] [CrossRef]
- Sarstedt, M.; Hair, J.F., Jr.; Cheah, J.-H.; Becker, J.-M.; Ringle, C.M. How to specify, estimate, and validate higher-order constructs in PLS-SEM. Australas. Mark. J. 2019, 27, 197–211. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Henseler, J. Composite-Based Structural Equation Modeling: Analyzing Latent and Emergent Variables; The Guilford Press: New York, NY, USA, 2021. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. In New Challenges to International Marketing; Sinkovics, R.R., Ghauri, P.N., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2009; pp. 277–319. [Google Scholar]
- Karhunen, J.; Raiko, T.; Cho, K.H. Unsupervised deep learning: A short review. In Advances in Independent Component Analysis and Learning Machines; Elsevier: Amsterdam, The Netherlands, 2015; pp. 125–142. [Google Scholar]
- Lee, V.H.; Hew, J.J.; Leong, L.Y.; Tan, G.W.H.; Ooi, K.B. Wearable payment: A deep learning based dual-stage SEM-ANN analysis. Expert Syst. Appl. 2020, 157, 113477. [Google Scholar] [CrossRef]
- Du, K.-L.; Swamy, M.N.S. Neural Networks and Statistical Learning, 2nd ed.; Springer: London, UK, 2019. [Google Scholar]
- Svozil, D.; Kvasnicka, V.; Pospichal, J. Introduction to multi-layer feed-forward neural networks. Chemom. Intell. Lab. Syst. 1997, 39, 43–62. [Google Scholar] [CrossRef]
- Nätti, S.; Hurmelinna-Laukkanen, P.; Johnston, W. Absorptive capacity and network orchestration in innovation communities-promoting service innovation. J. Bus. Ind. Mark. 2014, 29, 173–184. [Google Scholar] [CrossRef]
- Brem, A.; Nylund, P.A.; Hitchen, E.L. Open innovation and intellectual property rights: How do SMEs benefit from patents, industrial designs, trademarks and copyrights? Manag. Decis. 2017, 55, 1285–1306. [Google Scholar] [CrossRef]
- Stefan, I.; Bengtsson, L. Unravelling appropriability mechanisms and openness depth effects on firm performance across stages in the innovation process. Technol. Forecast. Soc. Change 2017, 120, 252–260. [Google Scholar] [CrossRef]
- Abbasi, G.A.; Tiew, L.Y.; Tang, J.; Goh, Y.N.; Thurasamy, R. The adoption of cryptocurrency as a disruptive force: Deep learning-based dual stage structural equation modelling and artificial neural network analysis. PLoS ONE 2021, 16, e0247582. [Google Scholar] [CrossRef]
- Ringle, C.M.; Sarstedt, M. Gain more insight from your PLS-SEM results: The importance-performance map analysis. Ind. Manag. Data Syst. 2016, 116, 1865–1886. [Google Scholar] [CrossRef]
- Fakfare, P. Influence of service attributes of food delivery application on customers’ satisfaction and their behavioural responses: The IPMA approach. Int. J. Gastron. Food Sci. 2021, 25, 100392. [Google Scholar] [CrossRef]
- Hsu, S.-H. Developing an index for online customer satisfaction: Adaptation of American Customer Satisfaction Index. Expert Syst. Appl. 2008, 34, 3033–3042. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep Learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- Hurmelinna-Laukkanen, P.; Nätti, S. Orchestrator types, roles and capabilities-A framework for innovation networks. Ind. Mark. Manag. 2018, 74, 65–78. [Google Scholar] [CrossRef]
- Reypens, C.; Lievens, A.; Blazevic, V. Hybrid orchestration in multi-stakeholder innovation networks: Practices of mobilizing multiple, diverse stakeholders across organizational boundaries. Organ. Stud. 2021, 42, 61–83. [Google Scholar] [CrossRef] [Green Version]
Survey Design | |||
---|---|---|---|
Unit of analysis | Firms located in Valenza Industrial District and Oradea Industrial Parks | ||
Sample selection design | Purposive sampling | ||
Survey collection method | Self-administered survey | ||
Sample size/Accepted responses | 100/98 | ||
Sample composition | |||
Distribution of participants’ responses on industry type | Jewelry industry | Automotive industry | Electronics industry |
48.98% | 38.78% | 12.24% | |
Distribution of participants’ responses on firm size | Small enterprises (10 to 49 employees) | Medium-sized enterprises (50 to 249 employees) | Large enterprises (more than 250 employees) |
51.02% | 8.16% | 40.82% |
Lower-Order Component | Item | Outer Loading | Cronbach’s α | ρA | AVE |
---|---|---|---|---|---|
KA1 | KA1-1 | 0.9382 | 0.8647 | 0.8648 | 0.8809 |
KA1-2 | 0.9389 | ||||
KA2 | KA2-1 | 0.9121 | 0.8294 | 0.8425 | 0.8536 |
KA2-2 | 0.9355 | ||||
KT1 | KT1-1 | 0.9766 | 0.9526 | 0.9529 | 0.9547 |
KT1-2 | 0.9776 | ||||
KT2 | KT2-1 | 0.8791 | 0.8267 | 0.8416 | 0.7428 |
KT2-2 | 0.8987 | ||||
KT2-3 | 0.8048 | ||||
KT3 | KT3-1 | 0.9179 | 0.688 | 0.7516 | 0.7568 |
KT3-2 | 0.8192 | ||||
KT4 | KT4-1 | 1 | 1 | 1 | 1 |
KT5 | KT5-1 | 0.8446 | 0.8731 | 0.891 | 0.7233 |
KT5-2 | 0.8979 | ||||
KT5-3 | 0.8687 | ||||
KT5-4 | 0.7868 | ||||
IA | IA1-1 | 1 | 1 | 1 | 1 |
SR1 | SR1-1 | 1 | 1 | 1 | 1 |
SR2 | SR2-1 | 0.9187 | 0.8175 | 0.8176 | 0.8457 |
SR2-2 | 0.9205 | ||||
OiP | OiP1-1 | 0.8400 | 0.9143 | 0.917 | 0.747 |
OiP1-2 | 0.8688 | ||||
OiP1-3 | 0.7820 | ||||
OiP1-4 | 0.8988 | ||||
OiP1-5 | 0.9249 |
IA | KA1 | KA2 | KT1 | KT2 | KT3 | KT4 | KT5 | OiP | SR1 | SR2 | |
---|---|---|---|---|---|---|---|---|---|---|---|
IA | |||||||||||
KA1 | 0.305 | ||||||||||
KA2 | 0.315 | 0.894 (1) | |||||||||
KT1 | 0.258 | 0.563 | 0.618 | ||||||||
KT2 | 0.191 | 0.738 | 0.781 | 0.832 | |||||||
KT3 | 0.097 | 0.756 | 0.723 | 0.538 | 0.815 | ||||||
KT4 | 0.362 | 0.492 | 0.571 | 0.668 | 0.665 | 0.443 | |||||
KT5 | 0.333 | 0.733 | 0.881 (1) | 0.739 | 0.844 | 0.729 | 0.696 | ||||
OiP | 0.289 | 0.706 | 0.748 | 0.718 | 0.714 | 0.631 | 0.717 | 0.84 | |||
SR1 | 0.210 | 0.315 | 0.492 | 0.342 | 0.249 | 0.277 | 0.264 | 0.530 | 0.386 | ||
SR2 | 0.235 | 0.818 | 0.865 (1) | 0.718 | 0.800 | 0.655 | 0.663 | 0.825 | 0.828 | 0.530 |
Second-Order Component | Item | Outer Loading | Cronbach’s α | ρA | AVE |
---|---|---|---|---|---|
KA | KA1 | 0.935 | 0.863 | 0.864 | 0.880 |
KA2 | 0.940 | ||||
KT | KT1 | 0.860 | 0.891 | 0.903 | 0.699 |
KT2 | 0.888 | ||||
KT3 | 0.719 | ||||
KT4 | 0.807 | ||||
KT5 | 0.893 | ||||
SR | SR1 | 0.750 | 0.648 | 0.846 | 0.723 |
SR2 | 0.940 |
IA | KA | KT | OiP | SR | |
---|---|---|---|---|---|
IA | |||||
KA | 0.327 | ||||
KT | 0.298 | 0.861 (1) | |||
OiP | 0.289 | 0.769 | 0.866 (1) | ||
SR | 0.305 | 0.888 (1) | 0.858 (1) | 0.820 |
Third-Order Component | Item | Outer Loading | Cronbach’s α | ρA | AVE |
---|---|---|---|---|---|
KM | KA | 0.927 | 0.859 | 0.872 | 0.876 |
KT | 0.945 |
IA | KM | OiP | SM | |
---|---|---|---|---|
IA | ||||
KM | 0.3433 | |||
OiP | 0.2895 | 0.8870 (1) | ||
SR | 0.3051 | 0.9471 (2) | 0.8201 |
IA | KM | OiP | SM | |
---|---|---|---|---|
IA | ||||
KM | 0.3431 | |||
OiP | 0.2807 | 0.8871 (1) | ||
SM | 0.3055 | 0.8978 (1) | 0.7778 |
Hypothesis | Path | Path Coefficient | T Statistic | p Value | Remark |
---|---|---|---|---|---|
H1 | KM -> OiP * | 0.638 | 7.311 | 0.000 | Supported |
H2 | IA -> OiP NS | 0.026 | 0.336 | 0.736 | Not supported |
H3 | SR -> OiP ** | 0.188 | 1.721 | 0.085 | Supported |
ANN Model | Architecture | Number of Neurons, Criterion | Number of Neurons in Each Hidden Layer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MLP | 1 hidden layer | J1 = 2,…,10 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
RMSETraining | 0.5228 | 0.5204 | 0.5176 | 0.5188 | 0.5110 | 0.5133 | 0.5121 | 0.5143 | 0.5165 | ||
RMSEValidation | 0.8548 | 0.8474 | 0.8386 | 0.8412 | 0.8265 | 0.8436 | 0.8415 | 0.8380 | 0.8510 | ||
2 hidden layers | J1 = 2,…,10; J2 = 1 | 2, 1 | 3, 1 | 4, 1 | 5, 1 | 6, 1 | 7, 1 | 8, 1 | 9, 1 | 10, 1 | |
RMSETraining | 0.5230 | 0.5150 | 0.5180 | 0.5169 | 0.5143 | 0.5277 | 0.5175 | 0.5238 | 0.5344 | ||
RMSEValidation | 0.8296 | 0.8243 | 0.8106 | 0.8271 | 0.8255 | 0.8454 | 0.8211 | 0.8407 | 0.8485 | ||
J1 = 2,…,10; J2 = 2 | 2, 2 | 3, 2 | 4, 2 | 5, 2 | 6, 2 | 7, 2 | 8, 2 | 9, 2 | 10, 2 | ||
RMSETraining | 0.5244 | 0.5320 | 0.5258 | 0.5184 | 0.5331 | 0.5238 | 0.5132 | 0.5226 | 0.5286 | ||
RMSEValidation | 0.8277 | 0.8296 | 0.8597 | 0.8298 | 0.8509 | 0.8377 | 0.8361 | 0.8452 | 0.8384 | ||
RBF | the RBF layer | J1 = 2,…,10 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
RMSETraining | 0.6355 | 0.6117 | 0.5509 | 0.6084 | 0.5930 | 0.5886 | 0.5853 | 0.5750 | 0.5619 | ||
RMSEValidation | 0.9333 | 1.0004 | 0.8776 | 1.1139 | 1.0761 | 1.0641 | 1.0545 | 0.8856 | 0.8569 |
RMSE Statistics of the 5-Fold cross Validation | Predictor Importance | ||||
---|---|---|---|---|---|
Fold | MLP(4,1) | Fold | KM | SR | |
Training | Testing | Training | Testing | ||
1 | 0.5738 | 0.5754 | 1 | 0.77 | 0.23 |
2 | 0.6048 | 0.4432 | 2 | 0.80 | 0.20 |
3 | 0.5365 | 0.7313 | 3 | 0.70 | 0.30 |
4 | 0.5691 | 0.4842 | 4 | 0.83 | 0.17 |
5 | 0.5603 | 0.9781 | 5 | 0.66 | 0.34 |
Mean | 0.5689 | 0.6425 | Mean | 0.752 | 0.248 |
Standard deviation | 0.0220 | 0.1948 | Normalized importance | 1 | 0.3298 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Băban, C.F.; Băban, M. An Orchestration Perspective on Open Innovation between Industry–University: Investigating Its Impact on Collaboration Performance. Mathematics 2022, 10, 2672. https://doi.org/10.3390/math10152672
Băban CF, Băban M. An Orchestration Perspective on Open Innovation between Industry–University: Investigating Its Impact on Collaboration Performance. Mathematics. 2022; 10(15):2672. https://doi.org/10.3390/math10152672
Chicago/Turabian StyleBăban, Călin Florin, and Marius Băban. 2022. "An Orchestration Perspective on Open Innovation between Industry–University: Investigating Its Impact on Collaboration Performance" Mathematics 10, no. 15: 2672. https://doi.org/10.3390/math10152672
APA StyleBăban, C. F., & Băban, M. (2022). An Orchestration Perspective on Open Innovation between Industry–University: Investigating Its Impact on Collaboration Performance. Mathematics, 10(15), 2672. https://doi.org/10.3390/math10152672