Dimensionless Characterization to Estimate Horizontal Groundwater Velocity from Temperature–Depth Profiles in Aquifers
Abstract
:1. Introduction
2. Physical, Mathematical and Network Models
3. Preliminary Discussion
4. Dimensionless Characterization
4.1. Horizontal Characteristic Length
4.2. Dimensionless Temperature Field
5. Inverse Problem and Application
5.1. Inverse Problem Protocol
- Depth of the aquifer: .
- Thermal diffusivity: .
- Temperatures at the surface and at the bottom of the aquifer ( and ).
- Steady state, average temperature measured at position (,): .
- Steady state, average temperature measured at position (,): .
- Steady state, average temperature measured at position (,): .
- Steady state, average temperature measured at position (,): .
- Steady state, average temperature measured at position (,): .
- Steady state, average temperature measured at position (, ): .
5.2. Application in the Quaternary Aquifer–Mar Menor Interaction Scenario
6. Contributions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Constant. | |
Capacitor connected to central node of the elementary cell. | |
Volumetric heat capacity of the soil–fluid matrix (Jm−3 k−1). | |
Volumetric specific heat of the water (Jm−3 k−1). | |
f | Denotes function. |
Current generator to implement flow rate. | |
Total depth of the domain (m). | |
Central node of the elementary cell. | |
Central node of the left edge of each elementary cell. | |
Central node of the right edge of each elementary cell. | |
Convection heat flux density (Jm−2s−1). | |
Diffusion heat flux density (Jm−2s−1). | |
Storage heat flux density (Jm−2s−1). | |
Thermal conductivity of the soil–fluid matrix (cal/(sm°C)). | |
Length of the aquifer (m). | |
Characteristic length along which the diffusive and advective effects are of the same order of magnitude (m). | |
Thermal characteristic length (m). | |
Resistor arranged in direction of the x-axis in the left half of the cell. | |
Resistor arranged in direction of the x-axis in the right half of the cell. | |
Resistance placed in direction of the y-axis at the bottom of the cell. | |
Resistance placed in direction of the y-axis at the top of the cell. | |
Time (s). | |
Temperature (°C). | |
Temperature at the soil surface (°C). | |
Temperature at the bottom of the aquifer (°C). | |
Temperature at the left border (°C). | |
Initial soil temperature (°C). | |
Vertical dimensionless temperature profile. | |
Horizontal dimensionless temperature profile. | |
Vertical temperature–depth profiles (°C). | |
Water flow velocity vector (m/s). | |
Fluid velocity (m/s). | |
V | Denotes voltage generator. |
Battery connected at central node of the bottom edge to fix a constant value temperature at the bottom of the aquifer. | |
Battery connected at central node of the left edge to fix a constant value temperature at the left boundary of the aquifer. | |
Battery connected at central node of the top boundary to fix a constant value temperature at the surface of the aquifer. | |
Horizontal flow velocity (m/s). | |
Spatial coordinates (m). | |
Thermal diffusivity of the soil–fluid matrix (m2/s), . | |
(m2/s). | |
Mathematical gradient operator. | |
Dimensionless group that characterizes the ratio between diffusion and advective effects over the aquifer domain . | |
Dimensionless monomial of horizontal characteristic length. | |
Dimensionless temperatures monomial. | |
Wet bulk density of the soil–fluid matrix (kg/m3). | |
Fluid density of the water (kgm−3). | |
Characteristic time (s). | |
|| | Absolute value. |
[] | To denote range of values. |
∈ | Contained in. |
~ | Order of magnitude. |
〈〉 | Symbol that encloses the list of relevant parameters of a problem. |
Related to spatial directions x and y, respectively. | |
, | Related to positions , within the aquifer. |
Related to positions and in the inverse problem protocol. | |
Related to central node of the elementary cell. | |
* | Denotes characteristic quantity. |
´ | Dimensionless quantity. |
References
- Lapham, W.W. Use of Temperature Profiles Beneath Streams to Determine Rates of Vertical Ground-Water Flow and Vertical Hydraulic Conductivity; U.S. Geological Survey Water-Supply 1989, Paper 2337; United States Geological Survey: Reston, VA, USA, 1989.
- Animasaun, I.L.; Shah, N.A.; Wakif, A.; Mahanthesh, B.; Sivaraj, R.; Koriko, O.K. Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-Analysis, and Scrutinization; Taylor & Francis: Abingdon, UK, 2022. [Google Scholar]
- Hosseini, N.; Khoei, A.R. Modeling Fluid Flow in Fractured Porous Media with the Interfacial Conditions Between Porous Medium and Fracture. Transp. Porous Media 2021, 139, 109–129. [Google Scholar] [CrossRef]
- Long, G.; Xu, G. The effects of perforation erosion on practical hydraulic-fracturing applications. SPE J. 2017, 22, 645–659. [Google Scholar] [CrossRef]
- Yu, B. Analysis of flow in fractal porous media. Appl. Mech. Rev. 2008, 61, 050801. [Google Scholar] [CrossRef]
- Xiao, B.; Li, Y.; Long, G. A fractal model of power-law fluid through charged fibrous porous media by using the fractional-derivative theory. Fractals 2022, 30, 2250072-446. [Google Scholar] [CrossRef]
- Suzuki, S. Percolation measurements based on heat flow through soil with special reference to paddy fields. J. Geophys. Res. 1960, 65, 2883–2885. [Google Scholar] [CrossRef]
- Stallman, R.W. Computation of ground-water velocity from temperature data. USGS Water Supply Pap. 1963, 1544, 36–46. [Google Scholar]
- Bredehoeft, J.D.; Papadopulos, I.S. Rates of vertical groundwater movement estimated from the Earth’s thermal profile. Water Resour. Res. 1965, 1, 325–328. [Google Scholar] [CrossRef]
- Ziagos, J.P.; Blackwell, D.D. A model for the transient temperature effects of horizontal fluid flow in geothermal systems. J. Volcanol. Geotherm. Res. 1986, 27, 371–397. [Google Scholar] [CrossRef]
- Taniguchi, M. Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature-depth profiles. Water Resour. Res. 1993, 29, 2021–2026. [Google Scholar] [CrossRef]
- Lu, N.; Ge, S. Effect of horizontal heat and fluid flow on the vertical temperature distribution in a semiconfining layer. Water Resour. Res. 1996, 32, 1449–1453. [Google Scholar] [CrossRef]
- Holzbecher, E. Inversion of temperature time series from near-surface porous sediments. J. Geophys. Eng. 2005, 2, 343–348. [Google Scholar] [CrossRef]
- Kulongoski, J.T.; Izbicki, J.A. Simulation of fluid, heat transport to estimate desert stream infiltration. Groundwater 2008, 46, 462–474. [Google Scholar] [CrossRef]
- Duque, C.; Müller, D.; Sebok, E.; Haider, K.; Engesgaard, P. Estimating groundwater discharge to surface waters using heat as a tracer in low flux environments: The role of thermal conductivity. Hydrol. Process. 2016, 30, 383–395. [Google Scholar] [CrossRef]
- McCord, J.; Reiter, M.; Phillips, F. Heat-flow data suggest large ground-water fluxes through Fruitland coals of the northern San Juan basin, Colorado-New Mexico. Geology 1992, 20, 419–422. [Google Scholar] [CrossRef]
- Constantz, J. Heat as a tracer to determine streambed water exchanges. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Szymkiewicz, A.; Tisler, W.; Burzyński, K. Examples of numerical simulations of two-dimensional unsaturated flow with VS2DI code using different interblock conductivity averaging schemes. Geologos 2015, 21, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Cartwright, K. Redistribution of geothermal heat by a shallow aquifer. Geol. Soc. Am. Bull. 1971, 82, 3197–3200. [Google Scholar] [CrossRef]
- Manteca, I.A.; Alcaraz, M.; Trigueros, E.; Alhama, F. Dimensionless characterization of salt intrusion benchmark scenarios in anisotropic media. Appl. Math. Comput. 2014, 247, 1173–1182. [Google Scholar] [CrossRef]
- Buckingham, E. On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 1914, 4, 345. [Google Scholar] [CrossRef]
- Lecampion, B.; Detournay, E. An implicit algorithm for the propagation of a hydraulic fracture with a fluid lag. Comput. Methods Appl. Mech. Eng. 2007, 196, 4863–4880. [Google Scholar] [CrossRef]
- Sánchez-Pérez, J.F.; Alhama, I. Simultaneous determination of initial porosity and diffusivity of water-saturated reinforced concrete subject to chloride penetration by inverse problem. Constr. Build. Mater. 2020, 259, 120412. [Google Scholar] [CrossRef]
- Alhama, I.; García-Ros, G.; Icardi, M. Non-Stationary Contaminant Plumes in the Advective-Diffusive Regime. Mathematics 2021, 9, 725. [Google Scholar] [CrossRef]
- González-Fernández, C.F.; Alhama, F. Heat Transfer and the Network Simulation Method; Horno, J., Ed.; Transworld Research Network: Trivandrum, India, 2001. [Google Scholar]
- Sánchez Pérez, J.F.; Conesa, M.; Alhama, I.; Alhama, F.; Cánovas, M. Searching fundamental information in ordinary differential equations. Nondimensionalization technique. PLoS ONE 2017, 12, e0185477. [Google Scholar]
- Bejan, A. Convection Heat Transfer; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Sonin, A.A. A generalization of the Π-theorem and dimensional analysis. Proc. Natl. Acad. Sci. USA 2004, 101, 8525–8526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madrid, C.N.; Alhama, F. Discrimination: A fundamental and necessary extension of classical dimensional analysis theory. Int. Commun. Heat Mass Transf. 2006, 33, 287–294. [Google Scholar] [CrossRef]
- Rey, J.; Martínez, J.; Barberá, G.G.; García-Aróstegui, J.L.; García-Pintado, J.; Martínez-Vicente, D. Geophysical characterization of the complex dynamics of groundwater and seawater exchange in a highly stressed aquifer system linked to a coastal lagoon (SE Spain). Environ. Earth Sci. 2013, 70, 2271–2282. [Google Scholar] [CrossRef]
- Del Ebro, C.H. Informe de Sostenibilidad Ambiental del Plan Especial de Actuación en Situaciones de Alerta y Eventual Sequía en la Cuenca Hidrográfica del Ebro. MIMAM. Zaragoza. 2007. Available online: http://vishub.org/officedocs/7088.pdf (accessed on 10 June 2022).
- Garcia-Pintado, J.; Martínez-Mena, M.; Barberá, G.G.; Albaladejo, J.; Castillo, V.M. Anthropogenic nutrient sources and loads from a Mediterranean catchment into a coastal lagoon: Mar Menor, Spain. Sci. Total Environ. 2007, 373, 220–239. [Google Scholar] [CrossRef] [PubMed]
Scenario | (°C) | (°C) | (°C) | (cal s−1 m−1 °C−1) | (cal/(m3 °C)) | (cal/(m3 °C)) | H (m) | (m/s) |
---|---|---|---|---|---|---|---|---|
I | 0 | 0 | 1 | 0.8 | 106 | 106 | 1 | 5·10−6 |
II | 0 | 0.5 | 1 | 0.8 | 106 | 106 | 1 | 5·10−6 |
III | 0 | 0.2 | 1 | 0.8 | 106 | 106 | 1 | 5·10−6 |
IV | 0 | 2 | 1 | 0.8 | 106 | 106 | 1 | 5·10−6 |
Temperature | Mean Value (°C) |
---|---|
17.45 | |
22.12 | |
19.93 | |
21.50 | |
21.75 | |
18.80 | |
20.15 | |
21.15 |
Temperature | Value |
---|---|
0.53 | |
0.87 | |
0.92 | |
0.29 | |
0.58 | |
0.79 |
(°C) | 17.45 |
(°C) | 22.12 |
(°C) | 22.12 |
(m2/s) | 1.00·10−6 |
H (m) | 33.75 |
L (m) | 1300.00 |
(m/s) | 1.86·10−6 |
Temperature | Measured (°C) | Direct Problem (°C) | e% |
---|---|---|---|
19.93 | 19.31 | 3.21 | |
21.50 | 20.73 | 3.71 | |
21.75 | 21.61 | 0.65 | |
18.80 | 18.69 | 0.59 | |
20.15 | 19.88 | 1.6 | |
21.15 | 21.02 | 0.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Valera, J.A.; Alhama, F. Dimensionless Characterization to Estimate Horizontal Groundwater Velocity from Temperature–Depth Profiles in Aquifers. Mathematics 2022, 10, 2717. https://doi.org/10.3390/math10152717
Jiménez-Valera JA, Alhama F. Dimensionless Characterization to Estimate Horizontal Groundwater Velocity from Temperature–Depth Profiles in Aquifers. Mathematics. 2022; 10(15):2717. https://doi.org/10.3390/math10152717
Chicago/Turabian StyleJiménez-Valera, José Antonio, and Francisco Alhama. 2022. "Dimensionless Characterization to Estimate Horizontal Groundwater Velocity from Temperature–Depth Profiles in Aquifers" Mathematics 10, no. 15: 2717. https://doi.org/10.3390/math10152717
APA StyleJiménez-Valera, J. A., & Alhama, F. (2022). Dimensionless Characterization to Estimate Horizontal Groundwater Velocity from Temperature–Depth Profiles in Aquifers. Mathematics, 10(15), 2717. https://doi.org/10.3390/math10152717