A Continuous-Time Semi-Markov System Governed by Stepwise Transitions
Abstract
:1. Introduction
2. System Settings
- with in other words is a stochastic matrix,
- using the definition of derivative and represents the density of random variable given that the previous state is
- 1.
- 2.
3. Recurrence Evolution Behaviour
- (a)
- The following recursive expression holds true and , such that
- (b)
- Similarly, if then
4. Step SMP with Minimum Sojourn Time
4.1. System Setting
4.2. Recurrence Evolution of the Step SMP with Minimum Sojourn Time
- (a)
- Under the model setting of this section, the following formula stand true and , in the case
- (b)
- In the case that the transition function is
5. Associated Estimation Procedures
- Nonparametric kernel estimation, as recently proposed in [23].
- Setand samplefrom the initial distribution
- Sample the random variableand set
- Sample the random variable and set
- Sample the random variableand set
- Setand
- Ifthen end;
- Else, setand continue to step 2.
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- (a)
- For the case where the transition function can be written as
- (b)
- Similarly as before, one can prove in the case of . In this case, (A1) can be written asAs for (A2), it takes the formA similar procedure in the case leads to the desired result.
- (a)
- The transition function, in the case , takes the formThe term (A8) of the above formula is written asAs for the term (A9) is written as
- (b)
- Following similar steps as before, one may obtain the corresponding recursive formula. We omit here the corresponding details.
References
- Barbu, V.S.; Limnios, N. Semi-Markov Chains and Hidden Semi-Markov Models toward Applications—Their Use in Reliability and DNA Analysis; Lecture Notes in Statistics; Springer: New York, NY, USA, 2008; Volume 191. [Google Scholar]
- Janssen, J.; Manca, R. Semi-Markov Risk Models for Finance, Insurance and Reliability; Springer: New York, NY, USA, 2007. [Google Scholar]
- Limnios, N.; Oprişan, G. Semi-Markov Processes and Reliability; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Papadopoulou, A.A.; Vassiliou, P.-C.G. Continuous time non-homogeneous semi-Markov systems. In Semi-Markov Models and Applications; Janssen, J., Limnios, N., Eds.; Kluwer Academic Publishing: Boston, MA, USA, 1999; pp. 241–251. [Google Scholar]
- Silvestrov, D.; Silvestrov, S. Nonlinearly Perturbed Semi-Markov Processes; Springer: Cham, Switzerland, 2017. [Google Scholar]
- D’Amico, G.; Biase, G.D.; Gismondi, F.; Manca, R. The evaluation of generalized Bernoulli processes for salary lines construction by means of continuous time generalized non-homogeneous semi-Markov processes. Commun. Stat.-Theory Methods 2013, 42, 2889–2901. [Google Scholar] [CrossRef]
- Feyter, T.D.; Guerry, M. Evaluating recruitment strategies using fuzzy set theory in stochastic manpower planning. Stoch. Anal. Appl. 2009, 27, 1148–1162. [Google Scholar] [CrossRef]
- Ernst, A.T.; Jiang, H.; Krishnamoorthy, M.; Sier, D. Staff scheduling and rostering: A review of applications, methods and models. Eur. J. Oper. Res. 2004, 153, 3–27. [Google Scholar] [CrossRef]
- Janssen, J.; Manca, R. Salary cost evaluation by means of non-homogeneous semi-Markov processes. Stoch. Model. 2002, 18, 7–23. [Google Scholar] [CrossRef]
- McClean, S.I. Semi-Markov models for manpower planning. In Semi-Markov Models: Theory and Applications; Janssen, J., Ed.; Springer: Boston, MA, USA, 1986. [Google Scholar]
- McClean, S.I.; Montgomery, E. Estimation for semi-Markov manpower models in a stochastic environment. In Semi-Markov Models and Applications; Janssen, J., Limnios, N., Eds.; Kluwer: Boston, MA, USA, 1999. [Google Scholar]
- Garnier, H.; Peter, C.Y. The advantages of directly identifying continuous-time transfer function models in practical applications. Int. J. Control. 2014, 87, 1319–1338. [Google Scholar] [CrossRef]
- Barbu, V.S.; D’Amico, G.; Manca, R.; Petroni, P. Step semi-Markov models and application to manpower management. Esaim Probab. Stat. 2016, 20, 555–571. [Google Scholar] [CrossRef]
- Garnier, H.; Liuping, W.; Peter, C.Y. Direct identification of continuous-time models from sampled data: Issues, basic solutions and relevance. In Identification of Continuous-Time Models from Sampled Data; Garnier, H., Wang, L., Eds.; Advances in Industrial Control; Springer: London, UK, 2008; pp. 1–29. [Google Scholar] [CrossRef]
- de Haan-Rietdijk, S.; Voelkle, M.C.; Keijsers, L.; Hamaker, E.L. Discrete-vs. continuous-time modeling of unequally spaced experience sampling method data. Front. Psychol. 2017, 8, 1849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blasi, A.; Janssen, J.; Manca, R. Numerical treatment of homogeneous and non-homogeneous semi-Markov reliability models. Commun. Stat. Theory Methods 2004, 33, 697–714. [Google Scholar] [CrossRef]
- Corradi, G.; Janssen, J.; Manca, R. Numerical treatment of homogeneous semi-Markov processes in transient case-a straightforward approach. Methodol. Comput. Appl. Probab. 2004, 6, 233–246. [Google Scholar] [CrossRef]
- D’Amico, G. Age-usage semi-Markov models. Appl. Math. Model. 2011, 35, 4354–4366. [Google Scholar] [CrossRef]
- Moura, M.D.C.; Droguett, E.L. Mathematical formulation and numerical treatment based on transition frequency densities and quadrature methods for non-homogeneous semi-Markov processes. Reliab. Eng. Syst. Saf. 2009, 94, 342–349. [Google Scholar] [CrossRef]
- Wu, B.; Maya, B.I.G.; Limnios, N. Using semi-Markov chains to solve semi-Markov processes. Methodol. Comput. Appl. Probab. 2021, 23, 1419–1431, Erratum in Commun. Methodol. Comput. Appl. Probab. 2021, 23, 1433–1434.. [Google Scholar] [CrossRef]
- Barbu, V.S.; Karagrigoriou, A.; Makrides, A. Estimation and reliability for a special type of semi-Markov process. J. Math. Stat. 2019, 15, 259–272. [Google Scholar] [CrossRef] [Green Version]
- Barbu, V.S.; Karagrigoriou, A.; Makrides, A. Semi-Markov modelling for multi-state systems. Methodol. Comput. Appl. Probab. 2016, 19, 1011–1028. [Google Scholar] [CrossRef]
- Ayhar, C.; Barbu, V.S.; Mokhtari, F.; Rahmani, S. On the asymptotic properties of some kernel estimators for continuous semi-Markov processes. J. Nonparametric Stat. 2022, 34, 299–318. [Google Scholar] [CrossRef]
- Barbu, V.S.; Beltaief, S.; Pergamenshchikov, S. Adaptive efficient estimation for generalized semi- Markov big data models. Ann. Inst. Stat. Math. 2022. [Google Scholar] [CrossRef]
- Barbu, V.S.; Beltaief, S.; Pergamenshchikov, S. Robust adaptive efficient estimation for a semi-Markov nonparametric regression models. Stat. Inference Stoch. Process. 2018, 22, 187–231. [Google Scholar] [CrossRef] [Green Version]
- Limnios, N.; Ouhbi, B. Nonparametric estimation of some important indicators in reliability for semi-Markov processes. Stat. Methodol. 2006, 3, 341–350. [Google Scholar] [CrossRef]
- Ouhbi, B.; Limnios, N. Nonparametric reliability estimation of semi-Markov processes. J. Stat. Plan. Inference 2003, 109, 155–165. [Google Scholar] [CrossRef]
- Votsi, I.; Gayraud, G.; Barbu, V.S.; Limnios, N. Hypotheses testing and posterior concentration rates for semi-Markov processes. Stat. Inference Stoch. Process. 2021, 24, 707–732. [Google Scholar] [CrossRef]
- Vassiliou, P.-C.G. Limiting distributions of a non-homogeneous Markov system in a stochastic environment in continuous time. Mathematics 2022, 10, 1214. [Google Scholar] [CrossRef]
- Dimitriou, V.A.; Tsantas, N. The augmented semi-Markov system in continuous time. Commun. Stat. Theory Methods 2012, 41, 88–107. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbu, V.S.; D’Amico, G.; Makrides, A. A Continuous-Time Semi-Markov System Governed by Stepwise Transitions. Mathematics 2022, 10, 2745. https://doi.org/10.3390/math10152745
Barbu VS, D’Amico G, Makrides A. A Continuous-Time Semi-Markov System Governed by Stepwise Transitions. Mathematics. 2022; 10(15):2745. https://doi.org/10.3390/math10152745
Chicago/Turabian StyleBarbu, Vlad Stefan, Guglielmo D’Amico, and Andreas Makrides. 2022. "A Continuous-Time Semi-Markov System Governed by Stepwise Transitions" Mathematics 10, no. 15: 2745. https://doi.org/10.3390/math10152745
APA StyleBarbu, V. S., D’Amico, G., & Makrides, A. (2022). A Continuous-Time Semi-Markov System Governed by Stepwise Transitions. Mathematics, 10(15), 2745. https://doi.org/10.3390/math10152745