Stationary Conditions and Characterizations of Solution Sets for Interval-Valued Tightened Nonlinear Problems
Abstract
:1. Introduction
2. Preliminaries
2.1. Interval Analysis
- (i)
- (ii)
- (iii)
- (iv)
- where t is a real number.
2.2. Generalized Derivatives
2.3. Interval-Valued Mathematical Programs with Switching Constraints (IVPSC)
2.4. Stationary Conditions
- Weakly stationary point (W-stationary point): A feasible point of IVPSC is called W-stationary if there exist multipliers , such that the following conditions hold
- Mordukhovich stationary point (M-stationary point): A feasible point of IVPSC is called M-stationary if there exist multipliers such that the following conditions hold
- Strong stationary point (S-stationary point): A feasible point of IVPSC is called S-stationary if there exist multipliers , such that the following conditions hold
3. Lagrange Multiplier Characterization
4. Conclusions and Future Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harker, P.T.; Pang, J.S. Existence of optimal solutions to mathematical programs with equilibrium constraints. Oper. Res. Lett. 1988, 7, 61–64. [Google Scholar] [CrossRef]
- Achtziger, W.; Kanzow, C. Mathematical programs with vanishing constraints: Optimality conditions and constraint qualifications. Math. Program. 2008, 114, 69–99. [Google Scholar] [CrossRef]
- Ben-Tal, A.; Jarre, F.; Kočvara, M.; Nemirovski, A.; Zowe, J. Optimal design of trusses under a nonconvex global buckling constraint. Optim. Eng. 2000, 1, 189–213. [Google Scholar] [CrossRef]
- Singh, Y.; Pandey, Y.; Mishra, S.K. Saddle point optimality criteria for mathematical programming problems with equilibrium constraints. Oper. Res. Lett. 2017, 45, 254–258. [Google Scholar] [CrossRef]
- Pandey, Y.; Mishra, S.K. Duality for nonsmooth optimization problems with equilibrium constraints, using convexificators. J. Optim. Theory Appl. 2016, 171, 694–707. [Google Scholar] [CrossRef]
- Pandey, Y.; Mishra, S.K. Optimality conditions and duality for semi-infinite mathematical programming problems with equilibrium constraints, using convexificators. Ann. Oper. Res. 2018, 69, 549–564. [Google Scholar] [CrossRef]
- Pandey, Y.; Mishra, S.K. On strong KKT type sufficient optimality conditions for nonsmooth multiobjective semi-infinite mathematical programming problems with equilibrium constraints. Oper. Res. Lett. 2016, 44, 148–151. [Google Scholar] [CrossRef]
- Mishra, S.K.; Singh, V.; Laha, V. On duality for mathematical programs with vanishing constraints. Ann. Oper. Res. 2016, 355, 249–272. [Google Scholar] [CrossRef]
- Mishra, S.K.; Singh, V.; Laha, V.; Mohapatra, R.N. On constraint qualifications for multiobjective optimization problems with vanishing constraints. In Optimization Methods, Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2015; pp. 95–135. [Google Scholar]
- Guu, S.M.; Singh, Y.; Mishra, S.K. On strong KKT type sufficient optimality conditions for multiobjective semi-infinite programming problems with vanishing constraints. J. Ineq. Appl. 2017, 2017, 282. [Google Scholar] [CrossRef] [Green Version]
- Lai, K.K.; Hassan, M.; Singh, S.K.; Maurya, J.K.; Mishra, S.K. Semidefinite multiobjective mathematical programming problems with vanishing constraints using convexificators. Fractal Fract. 2022, 6, 3. [Google Scholar] [CrossRef]
- Mehlitz, P. Stationarity conditions and constraint qualifications for mathematical programs with switching constraints. Math. Program. 2020, 181, 149–186. [Google Scholar] [CrossRef]
- Kanzow, C.; Mehlitz, P.; Steck, D. Relaxation schemes for mathematical programmes with switching constraints. Optim. Meth. Soft 2019, 36, 1223–1258. [Google Scholar] [CrossRef]
- Liang, Y.C.; Ye, J.J. Optimality conditions and exact penalty for mathematical programs with switching constraints. J. Optim. Theory Appl. 2021, 190, 1–31. [Google Scholar] [CrossRef]
- Pandey, Y.; Singh, V. On Constraint Qualifications for Multiobjective Optimization Problems with Switching Constraints. In Indo-French Seminar on Optimization, Variational Analysis and Applications; Springer: Singapore, 2020; pp. 283–306. [Google Scholar]
- Wu, H.C. On interval-valued nonlinear programming problems. J. Math. Anal. Appl. 2008, 338, 299–316. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.C. The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. Eur. J. Oper. Res. 2007, 176, 46–59. [Google Scholar] [CrossRef]
- Wu, H.C. The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions. Eur. J. Oper. Res. 2009, 196, 49–60. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Q.; Ma, X.; Li, L. Relationships between interval-valued vector optimization problems and vector variational inequalities. Fuzzy Optim. Decis. Mak. 2016, 15, 33–55. [Google Scholar] [CrossRef]
- Lai, K.K.; Shahi, A.; Mishra, S.K. On semidifferentiable interval-valued programming problems. J. Ineq. Appl. 2021, 2021, 35. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite-Hadamard-type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals. J. Ineq. Appl. 2021, 2021, 98. [Google Scholar] [CrossRef]
- Van Su, T.; Dinh, D.H. Duality results for interval-valued pseudoconvex optimization problem with equilibrium constraints with applications. Comput. Appl. Math. 2020, 39, 127. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H. Duality theorems for nondifferentiable semi-infinite interval-valued optimization problems with vanishing constraints. J. Ineq. Appl. 2021, 2021, 182. [Google Scholar] [CrossRef]
- Mangasarian, O.L. A simple characterization of solution sets of convex programs. Oper. Res. Lett. 1988, 7, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Burke, J.V.; Ferris, M.C. Characterization of solution sets of convex programs. Oper. Res. Lett. 1991, 10, 57–60. [Google Scholar] [CrossRef] [Green Version]
- Jeyakumar, V.; Lee, G.M.; Dinh, N. Lagrange multiplier conditions characterizing optimal solution sets of cone-constrained convex programs. J. Optim. Theory Appl. 2004, 123, 83–103. [Google Scholar] [CrossRef]
- Dinh, N.; Jeyakumar, V.; Lee, G.M. Lagrange multiplier characterizations of solution sets of constrained pseudolinear optimization problems. Optimization 2006, 55, 241–250. [Google Scholar] [CrossRef]
- Jeyakumar, V.; Lee, G.M.; Dinh, N. Characterizations of solution sets of convex vector minimization problems. Eur. J. Oper. Res. 2006, 174, 1380–1395. [Google Scholar] [CrossRef]
- Lalitha, C.S.; Mehta, M. Characterizations of solution sets of mathematical programs in terms of Lagrange multipliers. Optimization 2009, 58, 995–1007. [Google Scholar] [CrossRef]
- Son, T.Q.; Dinh, N. Characterizations of optimal solution sets of convex infinite programs. TOP 2008, 16, 147–163. [Google Scholar] [CrossRef]
- Mishra, S.K.; Upadhyay, B.B. Lagrange multiplier characterizations of solution sets of constrained nonsmooth pseudolinear optimization problems. J. Optim. Theory Appl. 2014, 160, 763–777. [Google Scholar] [CrossRef]
- Sisarat, N.; Wangkeeree, R. Characterizing the solution set of convex optimization problems without convexity of constraints. Optim. Lett. 2020, 14, 1127–1144. [Google Scholar] [CrossRef]
- Ivanov, V.I. Characterizations of solution sets of differentiable quasiconvex programming problems. J. Optim. Theory Appl. 2019, 181, 144–162. [Google Scholar] [CrossRef] [Green Version]
- Jeyakumar, V.; Lee, G.M.; Li, G. Characterizing robust solution sets of convex programs under data uncertainty. J. Optim. Theory Appl. 2015, 164, 407–435. [Google Scholar] [CrossRef]
- Kim, D.S.; Son, T.Q. Characterizations of solutions sets of a class of nonconvex semi-infinite programmin problems. J. Nonl. Convex Anal. 2011, 12, 429–440. [Google Scholar]
- Li, X.B.; Wang, S. Characterizations of robust solution set of convex programs with uncertain data. Optim. Lett. 2018, 12, 1387–1402. [Google Scholar] [CrossRef]
- Long, X.J.; Liu, J.; Huang, N.J. Characterizing the solution set for nonconvex semi-infinite programs involving tangential subdifferentials. Numer. Funct. Anal. Optim. 2021, 42, 279–297. [Google Scholar] [CrossRef]
- Sisarat, N.; Wangkeeree, R.; Lee, G.M. Some characterizations of robust solution sets for uncertain convex optimization problems with locally Lipschitz inequality constraints. J. Ind. Manag. Optim. 2020, 16, 469–493. [Google Scholar] [CrossRef] [Green Version]
- Son, T.Q.; Kim, D.S. A new approach to characterize the solution set of a pseudoconvex programming problem. J. Comput. Appl. Math. 2014, 261, 333–340. [Google Scholar] [CrossRef]
- Sun, X.K.; Teo, K.L.; Long, X.J. Characterizations of robust ϵ-quasi optimal solutions for nonsmooth optimization problems with uncertain data. Optimization 2021, 70, 847–870. [Google Scholar] [CrossRef]
- Sun, X.; Teo, K.L.; Tang, L. Dual approaches to characterize robust optimal solution sets for a class of uncertain optimization problems. J. Optim. Theory Appl. 2019, 182, 984–1000. [Google Scholar] [CrossRef]
- Yang, X.M. On characterizing the solutions of pseudoinvex extremum problems. J. Optim. Theory Appl. 2009, 140, 537–542. [Google Scholar] [CrossRef]
- Zhao, K.Q.; Yang, X.M. Characterizations of the solution set for a class of nonsmooth optimization problems. Optim. Lett. 2013, 7, 685–694. [Google Scholar] [CrossRef]
- Treanta, S. Characterization results of solutions in interval-valued optimization problems with mixed constraints. J. Glob. Optim. 2021, 951–964. [Google Scholar] [CrossRef]
- Mifflin, R. Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 1977, 15, 959–972. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.E. Methods and Applications of Interval Analysis; SIAM: Philadelphia, PA, USA, 1979. [Google Scholar]
- Clarke, F.H. Optimization and Nonsmooth Analysis; Willey-Interscience: New York, NY, USA, 1983. [Google Scholar]
- Clarke, F.H.; Yu S Ledyaev, J.S.S.; Wolenski, P.R. Nonsmooth Analysis and Control Theory; Springer: Berlin, Germany, 1998. [Google Scholar]
- Rockafellar, R.T. Convex Analysis; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Makela, M.M.; Neittaanmaki, P. Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control; World Scientific Publishing: Singapore, 1992. [Google Scholar]
- Loridan, P. Necessary Conditions for ϵ-Optimality. In Optimality and Stability in Mathematical Programming; Springer: Berlin/Heidelberg, Germany, 1982; pp. 140–152. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, K.K.; Mishra, S.K.; Singh, S.K.; Hassan, M. Stationary Conditions and Characterizations of Solution Sets for Interval-Valued Tightened Nonlinear Problems. Mathematics 2022, 10, 2763. https://doi.org/10.3390/math10152763
Lai KK, Mishra SK, Singh SK, Hassan M. Stationary Conditions and Characterizations of Solution Sets for Interval-Valued Tightened Nonlinear Problems. Mathematics. 2022; 10(15):2763. https://doi.org/10.3390/math10152763
Chicago/Turabian StyleLai, Kin Keung, Shashi Kant Mishra, Sanjeev Kumar Singh, and Mohd Hassan. 2022. "Stationary Conditions and Characterizations of Solution Sets for Interval-Valued Tightened Nonlinear Problems" Mathematics 10, no. 15: 2763. https://doi.org/10.3390/math10152763
APA StyleLai, K. K., Mishra, S. K., Singh, S. K., & Hassan, M. (2022). Stationary Conditions and Characterizations of Solution Sets for Interval-Valued Tightened Nonlinear Problems. Mathematics, 10(15), 2763. https://doi.org/10.3390/math10152763