Improving Large-Scale k-Nearest Neighbor Text Categorization with Label Autoencoders
Abstract
:1. Introduction
- We have employed MEDLINE as a huge labeled collection to train large label-AEs able to map MeSH descriptors onto a semantic latent space where label interdependence is coded.
- Our proposal adapts classical k-NN categorization to work in the semantic latent space learned by these AEs and employs the decoder subnet to predict the final candidate labels, instead of applying simple voting schemes like traditional k-NN.
- Additionally, we have evaluated different document representation approaches, using both sparse textual features and dense contextual representations. We have studied their effect in the computation of inter-document distances that are the starting point to find the set of neighbor documents employed in k-NN classification.
2. Related Work
2.1. Multi-Label Categorization
2.2. Autoencoders in Multi-Label Learning
- An encoder function , which maps the input vectors into a latent (often lower-dimensional) representation though a set of hidden layers.
- A decoder function , which acts as an interpreter of the latent representation and reconstructs the input vectors though a set of hidden layers, usually symmetric with the encoding layers.
- A middle hidden layer representing in the latent space Z an encoding of the input data.
2.3. Semantic Indexing in the Biomedical Domain
3. Materials and Methods
- MEDLINE provides us with an extensive collection of manually annotated documents to train our models.
- MeSH is a rich hierarchical thesaurus with a large set of descriptors and complex label co-occurrence.
3.1. Similarity Based Categorization (k-NN)
- 1.
- Create an indexable representation from the textual contents of every document (MEDLINE citations in our case) in the training dataset.Two different approaches for creating these indexable representations, dense and sparse, were evaluated in our study as is shown in Section 3.2.
- 2.
- Index these representations in a proper data structure in order to efficiently query it to retrieve sets of similar documents.
- 3.
- For each new document to annotate, the created index is queried using the indexable representation of the new document.The list of similar documents retrieved in this step together with their corresponding similarity measures are used to determine the following results:
- (a)
- expected number of labels to assign to the new document
- (b)
- ranked list of predicted labels (MeSH descriptors in our case)
3.2. Document Representation
- Sparse representations created by means of several NLP based linguistically motivated index term extraction methods, employed as discrete index terms in an Apache Lucene index (https://lucene.apache.org/, accessed on 24 July 2022).
- Dense representation created by using contextual sentence embeddings based on Deep Learning language models, stored in a numeric vector index.
3.2.1. Sparse Representations
- Stemming based representation (STEMS). This was the simplest approach which employs stop-word removal, using a standard stop-word list and the default stemmer from the Snowball project (http://snowball.tartarus.org, accessed on 24 July 2022).
- Morphosyntactic based representation (LEMMAS). In order to deal with morphosyntactic variation we have employed a lemmatizer to identify lexical roots and we also replaced stop-word removal with a content-word selection procedure based on part-of-speech (PoS) tags.We have delegated the linguistic processing tasks to the tools provided by the spaCy Natural Language Processing (NLP) toolkit (https://spacy.io/, accessed on 24 July 2022). In our case we have employed the PoS tagging and lemmatization information provided by spaCy, using the biomedical English models from the ScispaCy project (https://allenai.github.io/scispacy/, accessed on 24 July 2022).Only lemmas from tokens tagged as a noun, verb, adjective, adverb or as unknown words are taken into account to constitute the final document representation, since these PoSs are considered to carry most of the sentence meaning.
- Noum phrases based representation (NPS). In order to evaluate the contribution of more powerful NLP techniques, we have employed a surface parsing approach to identify syntactic motivated nominal phrases from which meaningful multi-word index terms could be extracted.Noun Phrase (NP) chunks identified by spaCy are selected and the lemmas of constituent tokens are joined together to create a multi-word index term.
- Dependencies based representation (DEPS). We have also employed as index terms triples of dependence-head-modifier extracted by the dependency parser provided by spaCy.In our case the spaCy dependency parsing model identifies syntactic dependencies following the Universal Dependencies(UD) scheme. The complex index terms were extracted from the following UD relationships Detailed list of UD relationships (available at https://universaldependencies.org/u/dep/, accessed on 24 July 2022): acl, advcl, advmod, amod, ccomp, compound, conj, csuj, dep, flat, iobj, nmod, nsubj, obj, xcomp, dobj and pobj.
- Named entities representation (NERS). Another type of multi-word representation taken into account is named entities. We have employed the NER module in spaCy and the ScispaCy models to extract general and biomedical named entities from document content.
- Keywords representation (KEYWORDS). The last kind of multi-word representation we have included is keywords extracted with statistical methods from the textual content of articles. We have employed the implementation of the TextRank algorithm [42] provided by the textacy library (https://textacy.readthedocs.io, accessed on 24 July 2022).
3.2.2. Dense Representations
3.3. Label Autoencoders
- Encoder with 2 hidden layers of decreasing size.
- Inner hidden embedding layer.
- Decoder with 2 hidden layers of increasing size, symmetrical to the encoder.
- ReLU (Rectified Linear Unit) activation function in hidden layer neurons.
- Feed-forward fully connected layers with a 0.2 Dropout in each hidden layer and batch normalization.
- Output layer with SIGMOID activation function (operating as a multi-label classifier).
- Binary cross-entropy loss function.
- 1.
- The index is queried and the set with the k documents closest to x is retrieved, along with their respective distances to x, ( for each ).
- Depending on the representation being used, title and abstract of x are converted into a sparse set of Lucene indexing terms or into a dense vector.
- Once the respective index (Lucene or FAISS) is queried, an ordered list of most similar citations is available, together with an estimate of their distances to the query document x.
- –
- BM25 scores converted to a pseudo-distance in with Lucene index
- –
- euclidean distance between dense representations with FAISS index
- 2.
- The encoder is applied to translate the set of labels assigned to each neighbor into the reduced semantic space, computing , with the set of labels in neighbor .
- 3.
- We create the weighted average vector in the embedding space, where .Several distance weighting schemes have been discussed in k-NN literature [38]. In our case we have employed two: (1) weight neighbors by 1 minus their distance () and (2) weight neighbors by the inverse of their distance squared ().
- 4.
- The decoder is used to convert this average vector from the embedding space to the original label space asVarious cutting and thresholding schemes can be used to binarize this vector and return the list of predicted labels.
- Estimate the number of labels to return, r, from the sizes of label sets of documents in , as described in citecual, and return the r predicted labels with the highest score.
- Apply a threshold on the activation of decoder output neurons to decide which labels have an excitation level high enough to be part of the final prediction.
4. Results and Discussion
- What is the effect on classification performance of the choice of training document representations? Are there substantial differences between sparse term-based similarity and dense vector-based similarity?
- What are the best parameterizations for label-AEs (size of embedding representation layer, sizes of encoder and decoder layers, etc)? What are the effects of retrieving different number of neighbor documents on the classification performance and how affects the weighting scheme employed when creating the average embedded vector?
4.1. Dataset Details and Evaluation Metrics
- The evaluation of binary classifiers typically employs Precision (P), which measures how many predicted labels are correct, Recall (R), which counts how many correct labels the evaluated model is able to predict, and F-score (F), which combines both metrics by calculating the harmonic mean of P and R. In multi-class and multi-label problems these metrics are generalized by calculating their Macro-averaged and Micro-averaged variants. A Macro-averaged measure computes a class-wide average of the corresponding measure while a Micro-averaged one computes the corresponding measure on all examples at once and, in the general case, uses to have the advantage of adequately handling the class imbalance. In our evaluation we followed the BioASQ challenge proposal [29] that employs the Micro-averaged versions of Precision (), Recall () and F-score () as main performance metrics, using as a ranking criteria.
- In XML, where the number of candidate labels is very large, metrics that focus on evaluating the effectiveness in predicting correct labels and generating an adequate ranking in the predicted label set are frequently used. Precision at top k () computes the fraction of correct predictions in the top k predicted labels. Normalized Discounted Cummulated Gain at top k () [46] is a measure of the ranking quality at the top k predicted labels, which evaluates the usefulness of a predicted label according its position in the result list. In our experimental results, we report the average and on the testing set with and , in order to provide a measure of prediction effectiveness.
4.2. Experimental Results
4.2.1. Dense vs. Sparse Representations
4.2.2. k-NN Prediction with Label Autoencoders
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsoumakas, G.; Katakis, I. Multi-label classification: An overview. Int. J. Data Warehous. Min. (IJDWM) 2007, 3, 1–13. [Google Scholar] [CrossRef]
- Madjarov, G.; Kocev, D.; Gjorgjevikj, D.; Džeroski, S. An extensive experimental comparison of methods for multi-label learning. Pattern Recognit. 2012, 45, 3084–3104. [Google Scholar] [CrossRef]
- Zhang, M.L.; Zhou, Z.H. A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 2013, 26, 1819–1837. [Google Scholar] [CrossRef]
- Schapire, R.E.; Singer, Y. BoosTexter: A boosting-based system for text categorization. Mach. Learn. 2000, 39, 135–168. [Google Scholar] [CrossRef]
- Elisseeff, A.; Weston, J. A kernel method for multi-labelled classification. Adv. Neural Inf. Process. Syst. 2001, 14, 681–687. [Google Scholar]
- Zhang, M.L.; Zhou, Z.H. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognit. 2007, 40, 2038–2048. [Google Scholar] [CrossRef]
- Zhang, M.L.; Zhou, Z.H. Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 2006, 18, 1338–1351. [Google Scholar] [CrossRef]
- Boutell, M.R.; Luo, J.; Shen, X.; Brown, C.M. Learning multi-label scene classification. Pattern Recognit. 2004, 37, 1757–1771. [Google Scholar] [CrossRef]
- Tsoumakas, G.; Katakis, I.; Vlahavas, I. Random k-labelsets for multilabel classification. IEEE Trans. Knowl. Data Eng. 2010, 23, 1079–1089. [Google Scholar] [CrossRef]
- Read, J.; Pfahringer, B.; Holmes, G.; Frank, E. Classifier chains for multi-label classification. Mach. Learn. 2011, 85, 333–359. [Google Scholar] [CrossRef]
- Hsu, D.J.; Kakade, S.M.; Langford, J.; Zhang, T. Multi-label prediction via compressed sensing. Adv. Neural Inf. Process. Syst. 2009, 22, 772–780. [Google Scholar]
- Tai, F.; Lin, H.T. Multilabel classification with principal label space transformation. Neural Comput. 2012, 24, 2508–2542. [Google Scholar] [CrossRef]
- Cisse, M.M.; Usunier, N.; Artieres, T.; Gallinari, P. Robust bloom filters for large multilabel classification tasks. Adv. Neural Inf. Process. Syst. 2013, 26, 933. [Google Scholar]
- Bhatia, K.; Jain, H.; Kar, P.; Varma, M.; Jain, P. Sparse local embeddings for extreme multi-label classification. Adv. Neural Inf. Process. Syst. 2015, 28, 495. [Google Scholar]
- Rai, P.; Hu, C.; Henao, R.; Carin, L. Large-scale bayesian multi-label learning via topic-based label embeddings. Adv. Neural Inf. Process. Syst. 2015, 28, 1805. [Google Scholar]
- Wicker, J.; Tyukin, A.; Kramer, S. A nonlinear label compression and transformation method for multi-label classification using autoencoders. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Auckland, New Zealand, 19–22 April 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 328–340. [Google Scholar]
- Yeh, C.K.; Wu, W.C.; Ko, W.J.; Wang, Y.C.F. Learning deep latent space for multi-label classification. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Wang, B.; Chen, L.; Sun, W.; Qin, K.; Li, K.; Zhou, H. Ranking-Based Autoencoder for Extreme Multi-label Classification. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; Association for Computational Linguistics: Minneapolis, Minnesota, 2019; pp. 2820–2830. [Google Scholar] [CrossRef]
- Agrawal, R.; Gupta, A.; Prabhu, Y.; Varma, M. Multi-label learning with millions of labels: Recommending advertiser bid phrases for web pages. In Proceedings of the 22nd international conference on World Wide Web, Rio de Janeiro, Brazil, 13–17 May 2013; pp. 13–24. [Google Scholar]
- Prabhu, Y.; Varma, M. Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label learning. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 263–272. [Google Scholar]
- Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A survey of deep neural network architectures and their applications. Neurocomputing 2017, 234, 11–26. [Google Scholar] [CrossRef]
- Charte, D.; Charte, F.; García, S.; del Jesus, M.J.; Herrera, F. A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines. Inf. Fusion 2018, 44, 78–96. [Google Scholar] [CrossRef]
- Pulgar-Rubio, F.; Charte, F.; Rivera-Rivas, A.; del Jesus, M.J. AEkNN: An AutoEncoder kNN-Based Classifier With Built-in Dimensionality Reduction. Int. J. Comput. Intell. Syst. 2018, 12, 436–452. [Google Scholar] [CrossRef]
- Jarrett, D.; van der Schaar, M. Target-Embedding Autoencoders for Supervised Representation Learning. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26 April–1 May 2020. [Google Scholar]
- U.S. National Library of Medicine. Medical Subject Headings. 2022. Available online: https://www.nlm.nih.gov/mesh/meshhome.html (accessed on 24 July 2022).
- Dai, S.; You, R.; Lu, Z.; Huang, X.; Mamitsuka, H.; Zhu, S. FullMeSH: Improving large-scale MeSH indexing with full text. Bioinformatics 2020, 36, 1533–1541. [Google Scholar] [CrossRef]
- Mork, J.; Aronson, A.; Demner-Fushman, D. 12 years on—Is the NLM medical text indexer still useful and relevant? J. Biomed. Semant. 2017, 8, 8. [Google Scholar] [CrossRef]
- Aronson, A.R.; Lang, F.M. An overview of MetaMap: Historical perspective and recent advances. J. Am. Med. Inform. Assoc. 2010, 17, 229–236. [Google Scholar] [CrossRef]
- Tsatsaronis, G.; Balikas, G.; Malakasiotis, P.; Partalas, I.; Zschunke, M.; Alvers, M.R.; Weissenborn, D.; Krithara, A.; Petridis, S.; Polychronopoulos, D.; et al. An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition. BMC Bioinform. 2015, 16, 138. [Google Scholar] [CrossRef]
- Gargiulo, F.; Silvestri, S.; Ciampi, M.; De Pietro, G. Deep neural network for hierarchical extreme multi-label text classification. Appl. Soft Comput. 2019, 79, 125–138. [Google Scholar] [CrossRef]
- Liu, K.; Peng, S.; Wu, J.; Zhai, C.; Mamitsuka, H.; Zhu, S. MeSHLabeler: Improving the accuracy of large-scale MeSH indexing by integrating diverse evidence. Bioinformatics 2015, 31, i339–i347. [Google Scholar] [CrossRef]
- Peng, S.; You, R.; Wang, H.; Zhai, C.; Mamitsuka, H.; Zhu, S. DeepMeSH: Deep semantic representation for improving large-scale MeSH indexing. Bioinformatics 2016, 32, i70–i79. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Lu, Z. MeSH Now: Automatic MeSH indexing at PubMed scale via learning to rank. J. Biomed. Semant. 2017, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Dhingra, B.; Cohen, W.; Lu, X. AttentionMeSH: Simple, effective and interpretable automatic MeSH indexer. In Proceedings of the 6th BioASQ Workshop A Challenge on Large-Scale Biomedical Semantic Indexing and Question Answering, Brussels, Belgium, November 2018; pp. 47–56. [Google Scholar]
- Xun, G.; Jha, K.; Yuan, Y.; Wang, Y.; Zhang, A. MeSHProbeNet: A self-attentive probe net for MeSH indexing. Bioinformatics 2019, 35, 3794–3802. [Google Scholar] [CrossRef] [PubMed]
- You, R.; Liu, Y.; Mamitsuka, H.; Zhu, S. BERTMeSH: Deep contextual representation learning for large-scale high-performance MeSH indexing with full text. Bioinformatics 2020, 37, 684–692. Available online: https://academic.oup.com/bioinformatics/article-pdf/37/5/684/37808596/btaa837.pdf (accessed on 24 July 2022). [CrossRef] [PubMed]
- Bedmar, I.S.; Martínez, P.; Martín, A.C. Search and graph database technologies for biomedical semantic indexing: Experimental analysis. JMIR Med. Inform. 2017, 5, e7059. [Google Scholar]
- Aha, D.W.; Kibler, D.; Albert, M.K. Instance-based learning algorithms. Mach. Learn. 1991, 6, 37–66. [Google Scholar] [CrossRef]
- Trieschnigg, D.; Pezik, P.; Lee, V.; De Jong, F.; Kraaij, W.; Rebholz-Schuhmann, D. MeSH Up: Effective MeSH text classification for improved document retrieval. Bioinformatics 2009, 25, 1412–1418. [Google Scholar] [CrossRef]
- Ribadas-Pena, F.J.; Cao, S.; Kuriyozov, E. CoLe and LYS at BioASQ MESINESP Task: Large-scale multilabel text categorization with sparse and dense indices. In Proceedings of the CLEF (Working Notes), Bucharest, Romania, 21–24 September 2021; pp. 313–323. [Google Scholar]
- Robertson, S.E.; Walker, S.; Jones, S.; Hancock-Beaulieu, M.M.; Gatford, M. Okapi at TREC-3. Nist Spec. Publ. 1995, 109, 109. [Google Scholar]
- Mihalcea, R.; Tarau, P. Textrank: Bringing order into text. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, Barcelona, Spain, 25–26 July 2004; pp. 404–411. [Google Scholar]
- Reimers, N.; Gurevych, I. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, Hong Kong, China, 3–7 November 2019; Association for Computational Linguistics: Stroudsburg, PL, USA, 2019. [Google Scholar]
- Cohan, A.; Feldman, S.; Beltagy, I.; Downey, D.; Weld, D. SPECTER: Document-level Representation Learning using Citation-informed Transformers. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; Association for Computational Linguistics: Stroudsburg, PL, USA, 2020; pp. 2270–2282. [Google Scholar] [CrossRef]
- Johnson, J.; Douze, M.; Jégou, H. Billion-scale similarity search with gpus. IEEE Trans. Big Data 2019, 7, 535–547. [Google Scholar] [CrossRef]
- Järvelin, K.; Kekäläinen, J. Cumulated gain-based evaluation of IR techniques. Acm Trans. Inf. Syst. (TOIS) 2002, 20, 422–446. [Google Scholar] [CrossRef]
- Ranaldi, L.; Fallucchi, F.; Zanzotto, F.M. Dis-Cover AI Minds to Preserve Human Knowledge. Future Internet 2022, 14, 10. [Google Scholar] [CrossRef]
- Nentidis, A.; Katsimpras, G.; Vandorou, E.; Krithara, A.; Gasco, L.; Krallinger, M.; Paliouras, G. Overview of BioASQ 2021: The Ninth BioASQ Challenge on Large-Scale Biomedical Semantic Indexing and Question Answering. In Proceedings of the International Conference of the Cross-Language Evaluation Forum for European Languages (CLEF2021), Bucharest, Romania, 21–24 September 2021; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
Number of | |
---|---|
Subhierarchy | Descriptors |
(A) Anatomy | 3303 |
(B) Organisms | 5210 |
(C) Diseases | 12,749 |
(D) Chemicals and Drugs | 23,589 |
(E) Analytical, Diagnostic and Therapeutic Techniques and Equipment | 5327 |
(F) Psychiatry and Psychology | 1435 |
(G) Biological Sciences | 3794 |
(H) Physical Sciences | 582 |
(I) Anthropology, Education, Sociology and Social Phenomena | 841 |
(J) Technology and Food and Beverages | 765 |
(K) Humanities | 216 |
(L) Information Science | 552 |
(M) Persons | 345 |
(N) Health Care | 2860 |
(V) Publication Characteristics | 231 |
(Z) Geographic Locations | 517 |
Collection Statistics | |||
---|---|---|---|
# citations | 6,791,951 | ||
# citations in dev dataset | 10,000 | ||
# citations in test dataset | 10,000 | ||
# MeSH descriptors | 29,483 | ||
min | max | avg | |
descriptors per citation | 1 | 19 | 12.90 |
descriptor occurrences | 1 | 4,621,007 † | 2972.26 |
MeSH descriptor distribution | |||
occurrences | number of descriptors | ||
≥ 1 M | 7 | ||
≥ 100 K | 65 | ||
≥ 10 K | 1314 | ||
≥ 1 K | 8752 | ||
≥ 100 | 21,310 |
k | MiF | MiP | MiR | P@5 | P@10 | nDCG@5 | nDCG@10 | |
---|---|---|---|---|---|---|---|---|
Stemms | 5 | 0.4943 | 0.4855 | 0.5035 | 0.7299 | 0.5527 | 0.7706 | 0.6613 |
10 | 0.5191 | 0.5082 | 0.5305 | 0.7550 | 0.5804 | 0.7999 | 0.6925 | |
20 | 0.5259 | 0.5151 | 0.5371 | 0.7574 | 0.5849 | 0.8043 | 0.6986 | |
30 | 0.5240 | 0.5129 | 0.5355 | 0.7579 | 0.5837 | 0.8045 | 0.6974 | |
50 | 0.5223 | 0.5111 | 0.5340 | 0.7527 | 0.5805 | 0.7991 | 0.6934 | |
100 | 0.5147 | 0.5031 | 0.5269 | 0.7413 | 0.5731 | 0.7898 | 0.6857 | |
Lemmas | 5 | 0.4920 | 0.4823 | 0.5020 | 0.7226 | 0.5496 | 0.7644 | 0.6574 |
10 | 0.5182 | 0.5078 | 0.5290 | 0.7485 | 0.5768 | 0.7931 | 0.6878 | |
20 | 0.5220 | 0.5114 | 0.5330 | 0.7538 | 0.5819 | 0.8010 | 0.6951 | |
30 | 0.5219 | 0.5107 | 0.5336 | 0.7544 | 0.5822 | 0.8018 | 0.6959 | |
50 | 0.5197 | 0.5087 | 0.5312 | 0.7488 | 0.5780 | 0.7960 | 0.6906 | |
100 | 0.5143 | 0.5029 | 0.5262 | 0.7370 | 0.5704 | 0.7854 | 0.6821 | |
multi | 5 | 0.4587 | 0.4492 | 0.4686 | 0.6909 | 0.5175 | 0.7329 | 0.6230 |
10 | 0.4875 | 0.4777 | 0.4977 | 0.7111 | 0.5441 | 0.7584 | 0.6529 | |
20 | 0.4972 | 0.4875 | 0.5072 | 0.7223 | 0.5540 | 0.7709 | 0.6646 | |
30 | 0.4981 | 0.4884 | 0.5082 | 0.7165 | 0.5536 | 0.7670 | 0.6639 | |
50 | 0.4945 | 0.4845 | 0.5049 | 0.7133 | 0.5500 | 0.7643 | 0.6605 | |
100 | 0.4897 | 0.4796 | 0.5002 | 0.7026 | 0.5437 | 0.7531 | 0.6519 | |
all | 5 | 0.4945 | 0.4856 | 0.5036 | 0.7276 | 0.5530 | 0.7681 | 0.6610 |
10 | 0.5207 | 0.5111 | 0.5307 | 0.7544 | 0.5795 | 0.8003 | 0.6930 | |
20 | 0.5276 | 0.5166 | 0.5390 | 0.7649 | 0.5894 | 0.8103 | 0.7035 | |
30 | 0.5274 | 0.5163 | 0.5389 | 0.7611 | 0.5861 | 0.8079 | 0.7009 | |
50 | 0.5237 | 0.5127 | 0.5352 | 0.7552 | 0.5821 | 0.8022 | 0.6958 | |
100 | 0.5176 | 0.5064 | 0.5293 | 0.7453 | 0.5753 | 0.7933 | 0.6884 | |
dense | 5 | 0.4779 | 0.4725 | 0.4834 | 0.7056 | 0.5299 | 0.7479 | 0.6380 |
10 | 0.4996 | 0.4936 | 0.5058 | 0.7348 | 0.5541 | 0.7800 | 0.6675 | |
20 | 0.5030 | 0.4970 | 0.5093 | 0.7327 | 0.5575 | 0.7826 | 0.6728 | |
30 | 0.5034 | 0.4970 | 0.5100 | 0.7350 | 0.5556 | 0.7843 | 0.6718 | |
50 | 0.5016 | 0.4950 | 0.5084 | 0.7291 | 0.5554 | 0.7789 | 0.6697 | |
100 | 0.4918 | 0.4848 | 0.4991 | 0.7161 | 0.5451 | 0.7672 | 0.6586 |
Input/Output | Encoder-1 | Encoder-2 | Embedding | Decoder-1 | Decoder-2 | # Parameters | |
---|---|---|---|---|---|---|---|
small | 29,483 | 1024 | 256 | 64 | 256 | 1024 | 60,975,467 |
medium | 29,483 | 2048 | 512 | 128 | 512 | 2048 | 123,035,563 |
large | 29,483 | 4096 | 1024 | 128 | 1024 | 4096 | 250,256,299 |
Threshold | Neighbors | Weighting | k | MiF | MiP | MiR | P@5 | P@10 | nDCG@5 | nDCG@10 |
---|---|---|---|---|---|---|---|---|---|---|
sparse(all) | difference | 5 | 0.4940 | 0.5338 | 0.4597 | 0.7042 | 0.5218 | 0.7492 | 0.6330 | |
10 | 0.4981 | 0.5388 | 0.4632 | 0.7153 | 0.5256 | 0.7620 | 0.6408 | |||
20 | 0.4914 | 0.5299 | 0.4581 | 0.7094 | 0.5209 | 0.7566 | 0.6362 | |||
30 | 0.4886 | 0.5290 | 0.4540 | 0.7081 | 0.5173 | 0.7546 | 0.6322 | |||
50 | 0.4826 | 0.5250 | 0.4466 | 0.6992 | 0.5095 | 0.7475 | 0.6248 | |||
100 | 0.4719 | 0.5190 | 0.4326 | 0.6909 | 0.4956 | 0.7396 | 0.6120 | |||
sparse(all) | square | 5 | 0.4950 | 0.5319 | 0.4629 | 0.7045 | 0.5221 | 0.7477 | 0.6318 | |
10 | 0.5038 | 0.5434 | 0.4696 | 0.7168 | 0.5302 | 0.7625 | 0.6439 | |||
20 | 0.4999 | 0.5399 | 0.4655 | 0.7189 | 0.5278 | 0.7640 | 0.6426 | |||
30 | 0.4965 | 0.5367 | 0.4619 | 0.7193 | 0.5256 | 0.7638 | 0.6405 | |||
50 | 0.4906 | 0.5329 | 0.4545 | 0.7114 | 0.5180 | 0.7581 | 0.6342 | |||
100 | 0.4810 | 0.5265 | 0.4427 | 0.7018 | 0.5048 | 0.7492 | 0.6218 | |||
dense | difference | 5 | 0.4821 | 0.5140 | 0.4539 | 0.6929 | 0.5129 | 0.7390 | 0.6234 | |
10 | 0.4874 | 0.5168 | 0.4611 | 0.7019 | 0.5207 | 0.7493 | 0.6331 | |||
20 | 0.4857 | 0.5142 | 0.4601 | 0.7026 | 0.5192 | 0.7500 | 0.6321 | |||
30 | 0.4822 | 0.5101 | 0.4571 | 0.6987 | 0.5171 | 0.7467 | 0.6297 | |||
50 | 0.4755 | 0.5040 | 0.4501 | 0.6931 | 0.5104 | 0.7420 | 0.6236 | |||
100 | 0.4688 | 0.4969 | 0.4437 | 0.6850 | 0.5039 | 0.7349 | 0.6169 | |||
dense | square | 5 | 0.4825 | 0.5142 | 0.4545 | 0.6943 | 0.5126 | 0.7402 | 0.6234 | |
10 | 0.4873 | 0.5168 | 0.4609 | 0.7024 | 0.5202 | 0.7497 | 0.6328 | |||
20 | 0.4850 | 0.5130 | 0.4599 | 0.7045 | 0.5187 | 0.7516 | 0.6321 | |||
30 | 0.4811 | 0.5089 | 0.4561 | 0.6954 | 0.5153 | 0.7440 | 0.6279 | |||
50 | 0.4734 | 0.5017 | 0.4481 | 0.6884 | 0.5069 | 0.7386 | 0.6204 | |||
100 | 0.4631 | 0.4903 | 0.4388 | 0.6782 | 0.4963 | 0.7291 | 0.6097 | |||
sparse(all) | difference | 5 | 0.4893 | 0.6281 | 0.4007 | 0.6900 | 0.4836 | 0.7384 | 0.6024 | |
10 | 0.4956 | 0.6433 | 0.4030 | 0.6985 | 0.4869 | 0.7495 | 0.6100 | |||
20 | 0.4898 | 0.6411 | 0.3963 | 0.6928 | 0.4805 | 0.7441 | 0.6036 | |||
30 | 0.4857 | 0.6405 | 0.3911 | 0.6883 | 0.4749 | 0.7398 | 0.5982 | |||
50 | 0.4794 | 0.6397 | 0.3833 | 0.6787 | 0.4662 | 0.7320 | 0.5896 | |||
100 | 0.4677 | 0.6350 | 0.3702 | 0.6682 | 0.4508 | 0.7219 | 0.5749 | |||
sparse(all) | square | 5 | 0.4915 | 0.6247 | 0.4051 | 0.6941 | 0.4874 | 0.7401 | 0.6051 | |
10 | 0.4998 | 0.6436 | 0.4085 | 0.7038 | 0.4914 | 0.7527 | 0.6131 | |||
20 | 0.4985 | 0.6496 | 0.4044 | 0.7046 | 0.4889 | 0.7532 | 0.6116 | |||
30 | 0.4941 | 0.6488 | 0.3989 | 0.7007 | 0.4840 | 0.7498 | 0.6071 | |||
50 | 0.4879 | 0.6460 | 0.3919 | 0.6922 | 0.4759 | 0.7437 | 0.6002 | |||
100 | 0.4773 | 0.6426 | 0.3796 | 0.6787 | 0.4608 | 0.7316 | 0.5855 | |||
dense | difference | 5 | 0.4828 | 0.6109 | 0.3991 | 0.6828 | 0.4793 | 0.7316 | 0.5971 | |
10 | 0.4842 | 0.6172 | 0.3983 | 0.6885 | 0.4813 | 0.7394 | 0.6020 | |||
20 | 0.4850 | 0.6220 | 0.3974 | 0.6900 | 0.4814 | 0.7407 | 0.6025 | |||
30 | 0.4817 | 0.6196 | 0.3941 | 0.6851 | 0.4778 | 0.7367 | 0.5988 | |||
50 | 0.4753 | 0.6130 | 0.3881 | 0.6789 | 0.4712 | 0.7315 | 0.5926 | |||
100 | 0.4673 | 0.6083 | 0.3794 | 0.6692 | 0.4616 | 0.7232 | 0.5834 | |||
dense | square | 5 | 0.4831 | 0.6106 | 0.3997 | 0.6836 | 0.4794 | 0.7323 | 0.5973 | |
10 | 0.4851 | 0.6182 | 0.3991 | 0.6893 | 0.4820 | 0.7399 | 0.6026 | |||
20 | 0.4842 | 0.6210 | 0.3967 | 0.6911 | 0.4807 | 0.7417 | 0.6022 | |||
30 | 0.4803 | 0.6176 | 0.3930 | 0.6818 | 0.4760 | 0.7340 | 0.5970 | |||
50 | 0.4718 | 0.6096 | 0.3849 | 0.6742 | 0.4677 | 0.7280 | 0.5894 | |||
100 | 0.4617 | 0.6031 | 0.3740 | 0.6611 | 0.4552 | 0.7163 | 0.5768 |
Threshold | Neighbors | Weighting | k | MiF | MiP | MiR | P@5 | P@10 | nDCG@5 | nDCG@10 |
---|---|---|---|---|---|---|---|---|---|---|
sparse(all) | difference | 5 | 0.5136 | 0.5532 | 0.4793 | 0.7265 | 0.5435 | 0.7717 | 0.6559 | |
10 | 0.5261 | 0.5781 | 0.4827 | 0.7421 | 0.5498 | 0.7896 | 0.6681 | |||
20 | 0.5223 | 0.5845 | 0.4720 | 0.7428 | 0.5444 | 0.7914 | 0.6650 | |||
30 | 0.5208 | 0.5903 | 0.4660 | 0.7402 | 0.5396 | 0.7889 | 0.6606 | |||
50 | 0.5153 | 0.5915 | 0.4565 | 0.7347 | 0.5302 | 0.7841 | 0.6525 | |||
100 | 0.5056 | 0.5936 | 0.4403 | 0.7217 | 0.5157 | 0.7739 | 0.6396 | |||
sparse(all) | square | 5 | 0.5114 | 0.5387 | 0.4867 | 0.7195 | 0.5435 | 0.7646 | 0.6539 | |
10 | 0.5280 | 0.5716 | 0.4905 | 0.7420 | 0.5556 | 0.7890 | 0.6718 | |||
20 | 0.5298 | 0.5873 | 0.4826 | 0.7492 | 0.5544 | 0.7962 | 0.6732 | |||
30 | 0.5274 | 0.5924 | 0.4752 | 0.7448 | 0.5477 | 0.7931 | 0.6677 | |||
50 | 0.5240 | 0.5967 | 0.4670 | 0.7432 | 0.5409 | 0.7919 | 0.6627 | |||
100 | 0.5155 | 0.5997 | 0.4521 | 0.7335 | 0.5282 | 0.7839 | 0.6513 | |||
dense | difference | 5 | 0.4980 | 0.5279 | 0.4713 | 0.7109 | 0.5303 | 0.7566 | 0.6417 | |
10 | 0.5077 | 0.5514 | 0.4705 | 0.7233 | 0.5356 | 0.7713 | 0.6513 | |||
20 | 0.5074 | 0.5583 | 0.4650 | 0.7234 | 0.5322 | 0.7737 | 0.6507 | |||
30 | 0.5063 | 0.5613 | 0.4611 | 0.7194 | 0.5290 | 0.7708 | 0.6478 | |||
50 | 0.5002 | 0.5593 | 0.4524 | 0.7152 | 0.5216 | 0.7676 | 0.6418 | |||
100 | 0.4924 | 0.5573 | 0.4411 | 0.7061 | 0.5117 | 0.7592 | 0.6317 | |||
dense | square | 5 | 0.4992 | 0.5287 | 0.4728 | 0.7113 | 0.5307 | 0.7567 | 0.6420 | |
10 | 0.5080 | 0.5512 | 0.4710 | 0.7221 | 0.5345 | 0.7702 | 0.6502 | |||
20 | 0.5063 | 0.5569 | 0.4641 | 0.7211 | 0.5310 | 0.7722 | 0.6497 | |||
30 | 0.5051 | 0.5607 | 0.4595 | 0.7179 | 0.5282 | 0.7700 | 0.6473 | |||
50 | 0.4977 | 0.5579 | 0.4492 | 0.7109 | 0.5178 | 0.7634 | 0.6377 | |||
100 | 0.4864 | 0.5532 | 0.4340 | 0.6983 | 0.5041 | 0.7527 | 0.6245 | |||
sparse(all) | difference | 5 | 0.5152 | 0.6111 | 0.4453 | 0.7217 | 0.5264 | 0.7682 | 0.6426 | |
10 | 0.5251 | 0.6403 | 0.4450 | 0.7348 | 0.5288 | 0.7841 | 0.6515 | |||
20 | 0.5203 | 0.6494 | 0.4340 | 0.7324 | 0.5198 | 0.7838 | 0.6454 | |||
30 | 0.5167 | 0.6560 | 0.4261 | 0.7285 | 0.5131 | 0.7801 | 0.6394 | |||
50 | 0.5090 | 0.6574 | 0.4152 | 0.7209 | 0.5016 | 0.7736 | 0.6291 | |||
100 | 0.4965 | 0.6587 | 0.3985 | 0.7076 | 0.4851 | 0.7630 | 0.6143 | |||
sparse(all) | square | 5 | 0.5127 | 0.5943 | 0.4509 | 0.7163 | 0.5269 | 0.7622 | 0.6411 | |
10 | 0.5265 | 0.6316 | 0.4514 | 0.7374 | 0.5341 | 0.7858 | 0.6553 | |||
20 | 0.5286 | 0.6512 | 0.4448 | 0.7416 | 0.5320 | 0.7907 | 0.6557 | |||
30 | 0.5260 | 0.6594 | 0.4375 | 0.7365 | 0.5239 | 0.7868 | 0.6490 | |||
50 | 0.5189 | 0.6631 | 0.4261 | 0.7324 | 0.5128 | 0.7838 | 0.6404 | |||
100 | 0.5071 | 0.6651 | 0.4097 | 0.7191 | 0.4973 | 0.7731 | 0.6264 | |||
dense | difference | 5 | 0.5018 | 0.5884 | 0.4374 | 0.7081 | 0.5139 | 0.7546 | 0.6292 | |
10 | 0.5072 | 0.6122 | 0.4330 | 0.7175 | 0.5155 | 0.7670 | 0.6356 | |||
20 | 0.5071 | 0.6245 | 0.4268 | 0.7166 | 0.5103 | 0.7685 | 0.6335 | |||
30 | 0.5026 | 0.6246 | 0.4204 | 0.7117 | 0.5047 | 0.7650 | 0.6288 | |||
50 | 0.4956 | 0.6257 | 0.4103 | 0.7052 | 0.4952 | 0.7601 | 0.6206 | |||
100 | 0.4875 | 0.6247 | 0.3998 | 0.6952 | 0.4849 | 0.7510 | 0.6104 | |||
dense | square | 5 | 0.5025 | 0.5881 | 0.4387 | 0.7082 | 0.5145 | 0.7545 | 0.6297 | |
10 | 0.5075 | 0.6122 | 0.4334 | 0.7164 | 0.5144 | 0.7660 | 0.6346 | |||
20 | 0.5070 | 0.6250 | 0.4265 | 0.7147 | 0.5097 | 0.7674 | 0.6330 | |||
30 | 0.5005 | 0.6233 | 0.4181 | 0.7104 | 0.5032 | 0.7643 | 0.6276 | |||
50 | 0.4918 | 0.6231 | 0.4062 | 0.7010 | 0.4910 | 0.7560 | 0.6164 | |||
100 | 0.4807 | 0.6198 | 0.3926 | 0.6869 | 0.4772 | 0.7440 | 0.6030 |
Threshold | Neighbors | Weighting | k | MiF | MiP | MiR | P@5 | P@10 | nDCG@5 | nDCG@10 |
---|---|---|---|---|---|---|---|---|---|---|
sparse(all) | difference | 5 | 0.4962 | 0.6457 | 0.4029 | 0.6934 | 0.4866 | 0.7439 | 0.6077 | |
10 | 0.4959 | 0.6733 | 0.3925 | 0.7006 | 0.4796 | 0.7558 | 0.6082 | |||
20 | 0.4899 | 0.6857 | 0.3812 | 0.6971 | 0.4702 | 0.7534 | 0.6011 | |||
30 | 0.4843 | 0.6901 | 0.3731 | 0.6890 | 0.4621 | 0.7469 | 0.5935 | |||
50 | 0.4747 | 0.6932 | 0.3610 | 0.6778 | 0.4488 | 0.7370 | 0.5811 | |||
100 | 0.4601 | 0.6981 | 0.3431 | 0.6609 | 0.4297 | 0.7226 | 0.5631 | |||
sparse(all) | square | 5 | 0.4973 | 0.6285 | 0.4114 | 0.6924 | 0.4952 | 0.7427 | 0.6132 | |
10 | 0.5006 | 0.6662 | 0.4010 | 0.7064 | 0.4860 | 0.7584 | 0.6123 | |||
20 | 0.4972 | 0.6864 | 0.3897 | 0.7078 | 0.4792 | 0.7613 | 0.6090 | |||
30 | 0.4921 | 0.6917 | 0.3819 | 0.7030 | 0.4715 | 0.7580 | 0.6030 | |||
50 | 0.4835 | 0.6960 | 0.3704 | 0.6896 | 0.4594 | 0.7473 | 0.5917 | |||
100 | 0.4700 | 0.7017 | 0.3534 | 0.6727 | 0.4406 | 0.7333 | 0.5742 | |||
dense | difference | 5 | 0.4874 | 0.6179 | 0.4024 | 0.6889 | 0.4859 | 0.7414 | 0.6065 | |
10 | 0.4897 | 0.6473 | 0.3939 | 0.6943 | 0.4801 | 0.7496 | 0.6063 | |||
20 | 0.4868 | 0.6609 | 0.3853 | 0.6911 | 0.4746 | 0.7479 | 0.6024 | |||
30 | 0.4822 | 0.6646 | 0.3783 | 0.6879 | 0.4666 | 0.7453 | 0.5958 | |||
50 | 0.4754 | 0.6667 | 0.3694 | 0.6797 | 0.4572 | 0.7386 | 0.5873 | |||
100 | 0.4659 | 0.6661 | 0.3582 | 0.6696 | 0.4450 | 0.7305 | 0.5763 | |||
dense | square | 5 | 0.4884 | 0.6181 | 0.4036 | 0.6894 | 0.4868 | 0.7414 | 0.6069 | |
10 | 0.4899 | 0.6466 | 0.3944 | 0.6946 | 0.4803 | 0.7498 | 0.6065 | |||
20 | 0.4862 | 0.6606 | 0.3846 | 0.6894 | 0.4733 | 0.7462 | 0.6008 | |||
30 | 0.4814 | 0.6642 | 0.3776 | 0.6867 | 0.4651 | 0.7439 | 0.5941 | |||
50 | 0.4723 | 0.6656 | 0.3660 | 0.6749 | 0.4535 | 0.7352 | 0.5839 | |||
100 | 0.4600 | 0.6629 | 0.3521 | 0.6627 | 0.4383 | 0.7241 | 0.5694 | |||
sparse(all) | difference | 5 | 0.4795 | 0.6912 | 0.3671 | 0.6779 | 0.4541 | 0.7322 | 0.5811 | |
10 | 0.4755 | 0.7212 | 0.3546 | 0.6772 | 0.4424 | 0.7377 | 0.5769 | |||
20 | 0.4677 | 0.7358 | 0.3428 | 0.6655 | 0.4296 | 0.7280 | 0.5651 | |||
30 | 0.4616 | 0.7450 | 0.3344 | 0.6584 | 0.4209 | 0.7228 | 0.5577 | |||
50 | 0.4508 | 0.7481 | 0.3226 | 0.6446 | 0.4064 | 0.7111 | 0.5441 | |||
100 | 0.4339 | 0.7511 | 0.3051 | 0.6262 | 0.3868 | 0.6945 | 0.5245 | |||
sparse(all) | square | 5 | 0.4822 | 0.6758 | 0.3749 | 0.6792 | 0.4611 | 0.7328 | 0.5863 | |
10 | 0.4821 | 0.7143 | 0.3638 | 0.6854 | 0.4510 | 0.7427 | 0.5836 | |||
20 | 0.4771 | 0.7378 | 0.3526 | 0.6819 | 0.4418 | 0.7412 | 0.5770 | |||
30 | 0.4714 | 0.7468 | 0.3444 | 0.6735 | 0.4322 | 0.7353 | 0.5689 | |||
50 | 0.4611 | 0.7510 | 0.3326 | 0.6599 | 0.4190 | 0.7239 | 0.5564 | |||
100 | 0.4432 | 0.7532 | 0.3140 | 0.6373 | 0.3974 | 0.7053 | 0.5360 | |||
dense | difference | 5 | 0.4746 | 0.6679 | 0.3681 | 0.6741 | 0.4541 | 0.7304 | 0.5811 | |
10 | 0.4729 | 0.6971 | 0.3578 | 0.6771 | 0.4461 | 0.7369 | 0.5790 | |||
20 | 0.4675 | 0.7157 | 0.3471 | 0.6691 | 0.4360 | 0.7314 | 0.5706 | |||
30 | 0.4623 | 0.7186 | 0.3408 | 0.6643 | 0.4289 | 0.7277 | 0.5645 | |||
50 | 0.4545 | 0.7199 | 0.3321 | 0.6533 | 0.4185 | 0.7188 | 0.5550 | |||
100 | 0.4448 | 0.7226 | 0.3212 | 0.6410 | 0.4052 | 0.7085 | 0.5425 | |||
dense | square | 5 | 0.4761 | 0.6681 | 0.3698 | 0.6754 | 0.4560 | 0.7309 | 0.5822 | |
10 | 0.4734 | 0.6983 | 0.3581 | 0.6760 | 0.4461 | 0.7361 | 0.5788 | |||
20 | 0.4668 | 0.7149 | 0.3466 | 0.6672 | 0.4346 | 0.7295 | 0.5690 | |||
30 | 0.4621 | 0.7197 | 0.3403 | 0.6626 | 0.4280 | 0.7256 | 0.5630 | |||
50 | 0.4516 | 0.7182 | 0.3294 | 0.6498 | 0.4152 | 0.7162 | 0.5519 | |||
100 | 0.4381 | 0.7215 | 0.3146 | 0.6328 | 0.3975 | 0.7010 | 0.5344 |
Threshold | Neighbors | Weighting | k | MiF | MiP | MiR | P@5 | P@10 | nDCG@5 | nDCG@10 |
---|---|---|---|---|---|---|---|---|---|---|
sparse(all) | difference | 5 | 0.5109 | 0.5018 | 0.5204 | 0.5159 | 0.5076 | 0.5152 | 0.5341 | |
10 | 0.5309 | 0.5208 | 0.5414 | 0.5384 | 0.5301 | 0.5398 | 0.5598 | |||
20 | 0.5345 | 0.5236 | 0.5460 | 0.5530 | 0.5383 | 0.5534 | 0.5694 | |||
30 | 0.5330 | 0.5218 | 0.5448 | 0.5554 | 0.5382 | 0.5564 | 0.5706 | |||
50 | 0.5304 | 0.5191 | 0.5422 | 0.5571 | 0.5371 | 0.5586 | 0.5705 | |||
100 | 0.5243 | 0.5130 | 0.5361 | 0.5590 | 0.5346 | 0.5605 | 0.5694 | |||
sparse(all) | square | 5 | 0.5063 | 0.4973 | 0.5155 | 0.4993 | 0.4968 | 0.4987 | 0.5205 | |
10 | 0.5294 | 0.5197 | 0.5395 | 0.5306 | 0.5277 | 0.5303 | 0.5536 | |||
20 | 0.5385 | 0.5277 | 0.5498 | 0.5484 | 0.5404 | 0.5496 | 0.5700 | |||
30 | 0.5408 | 0.5299 | 0.5522 | 0.5562 | 0.5432 | 0.5554 | 0.5732 | |||
50 | 0.5399 | 0.5286 | 0.5517 | 0.5578 | 0.5429 | 0.5583 | 0.5743 | |||
100 | 0.5355 | 0.5239 | 0.5476 | 0.5555 | 0.5390 | 0.5537 | 0.5688 | |||
dense | difference | 5 | 0.4942 | 0.4885 | 0.5002 | 0.4825 | 0.4864 | 0.4803 | 0.5065 | |
10 | 0.5098 | 0.5038 | 0.5159 | 0.5050 | 0.5037 | 0.5033 | 0.5275 | |||
20 | 0.5152 | 0.5089 | 0.5217 | 0.5101 | 0.5116 | 0.5071 | 0.5339 | |||
30 | 0.5148 | 0.5085 | 0.5212 | 0.5130 | 0.5134 | 0.5093 | 0.5359 | |||
50 | 0.5122 | 0.5059 | 0.5187 | 0.5080 | 0.5095 | 0.5070 | 0.5333 | |||
100 | 0.5067 | 0.4998 | 0.5139 | 0.5078 | 0.5065 | 0.5042 | 0.5290 | |||
dense | square | 5 | 0.4944 | 0.4886 | 0.5003 | 0.4828 | 0.4854 | 0.4804 | 0.5056 | |
10 | 0.5095 | 0.5036 | 0.5156 | 0.5043 | 0.5033 | 0.5033 | 0.5273 | |||
20 | 0.5146 | 0.5083 | 0.5211 | 0.5086 | 0.5112 | 0.5053 | 0.5330 | |||
30 | 0.5136 | 0.5072 | 0.5200 | 0.5096 | 0.5113 | 0.5067 | 0.5339 | |||
50 | 0.5088 | 0.5022 | 0.5155 | 0.5066 | 0.5068 | 0.5041 | 0.5296 | |||
100 | 0.4993 | 0.4921 | 0.5066 | 0.5021 | 0.5007 | 0.4979 | 0.5227 | |||
sparse(all) | difference | 5 | 0.5135 | 0.5043 | 0.5230 | 0.5706 | 0.5354 | 0.5694 | 0.5714 | |
10 | 0.5346 | 0.5244 | 0.5452 | 0.5984 | 0.5612 | 0.5997 | 0.6010 | |||
20 | 0.5412 | 0.5301 | 0.5528 | 0.6138 | 0.5692 | 0.6163 | 0.6124 | |||
30 | 0.5409 | 0.5295 | 0.5528 | 0.6199 | 0.5712 | 0.6233 | 0.6166 | |||
50 | 0.5377 | 0.5262 | 0.5496 | 0.6199 | 0.5697 | 0.6227 | 0.6147 | |||
100 | 0.5308 | 0.5193 | 0.5427 | 0.6153 | 0.5625 | 0.6206 | 0.6097 | |||
sparse(all) | square | 5 | 0.5055 | 0.4966 | 0.5148 | 0.5500 | 0.5235 | 0.5478 | 0.5546 | |
10 | 0.5321 | 0.5223 | 0.5423 | 0.5873 | 0.5549 | 0.5883 | 0.5923 | |||
20 | 0.5446 | 0.5337 | 0.5560 | 0.6108 | 0.5729 | 0.6126 | 0.6136 | |||
30 | 0.5483 | 0.5372 | 0.5599 | 0.6172 | 0.5768 | 0.6208 | 0.6198 | |||
40 | 0.5492 | 0.5378 | 0.5612 | 0.6193 | 0.5755 | 0.6217 | 0.6188 | |||
50 | 0.5482 | 0.5367 | 0.5601 | 0.6185 | 0.5743 | 0.6208 | 0.6173 | |||
100 | 0.5430 | 0.5313 | 0.5552 | 0.6080 | 0.5654 | 0.6086 | 0.6064 | |||
dense | difference | 5 | 0.4952 | 0.4894 | 0.5011 | 0.5384 | 0.5143 | 0.5346 | 0.5433 | |
10 | 0.5133 | 0.5073 | 0.5194 | 0.5663 | 0.5320 | 0.5628 | 0.5660 | |||
20 | 0.5221 | 0.5157 | 0.5287 | 0.5756 | 0.5446 | 0.5717 | 0.5778 | |||
30 | 0.5201 | 0.5138 | 0.5266 | 0.5744 | 0.5443 | 0.5717 | 0.5781 | |||
50 | 0.5181 | 0.5117 | 0.5246 | 0.5768 | 0.5433 | 0.5727 | 0.5773 | |||
100 | 0.5146 | 0.5075 | 0.5219 | 0.5751 | 0.5378 | 0.5695 | 0.5718 | |||
dense | square | 5 | 0.4951 | 0.4894 | 0.5011 | 0.5387 | 0.5134 | 0.5335 | 0.5416 | |
10 | 0.5142 | 0.5082 | 0.5203 | 0.5654 | 0.5320 | 0.5616 | 0.5654 | |||
20 | 0.5211 | 0.5147 | 0.5277 | 0.5757 | 0.5443 | 0.5722 | 0.5780 | |||
30 | 0.5200 | 0.5136 | 0.5266 | 0.5722 | 0.5425 | 0.5690 | 0.5759 | |||
50 | 0.5155 | 0.5088 | 0.5223 | 0.5730 | 0.5378 | 0.5691 | 0.5725 | |||
100 | 0.5085 | 0.5013 | 0.5160 | 0.5686 | 0.5316 | 0.5633 | 0.5654 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribadas-Pena, F.J.; Cao, S.; Darriba Bilbao, V.M. Improving Large-Scale k-Nearest Neighbor Text Categorization with Label Autoencoders. Mathematics 2022, 10, 2867. https://doi.org/10.3390/math10162867
Ribadas-Pena FJ, Cao S, Darriba Bilbao VM. Improving Large-Scale k-Nearest Neighbor Text Categorization with Label Autoencoders. Mathematics. 2022; 10(16):2867. https://doi.org/10.3390/math10162867
Chicago/Turabian StyleRibadas-Pena, Francisco J., Shuyuan Cao, and Víctor M. Darriba Bilbao. 2022. "Improving Large-Scale k-Nearest Neighbor Text Categorization with Label Autoencoders" Mathematics 10, no. 16: 2867. https://doi.org/10.3390/math10162867
APA StyleRibadas-Pena, F. J., Cao, S., & Darriba Bilbao, V. M. (2022). Improving Large-Scale k-Nearest Neighbor Text Categorization with Label Autoencoders. Mathematics, 10(16), 2867. https://doi.org/10.3390/math10162867