A Novel Artificial Visual System for Motion Direction Detection in Grayscale Images
Abstract
:1. Introduction
- the existence of at least two spatially separated light intensity detectors;
- the existence of asymmetry in the temporal gradient based on spatial separation;
- the existence of at least one nonlinear computational unit.
- We innovatively introduced both BCs and HCs;
- We faithfully defined their original biological properties and connection structures;
- Because not necessary to further rely on any other cell function to complete the motion direction detection task, we temporarily eliminated the AC located in the posterior inner plexiform layer (IPL) considering that it can be used in a non-basic more advanced information integration mechanism such as being a post filter to help improve the noise immunity;
- We achieved a breakthrough in its limitations of black-and-white (binary) detection without adding any non-essential cellular structure and constructed a set of DS pathway model for grayscale images that are faithful, reasonable, and complete in both cellular function and model structure.
- This work gives an advanced quantitative way and mechanism for the DS circuit in the visual system of mammals (note that including human) brain. It offers a reasonable interpretation to solve the important problem that has plagued us for decades.
- This work can be extended as a framework for understanding a variety of basic visual phenomena, including shape orientation, motion direction, and motion velocity, as well as that in stereo vision.
- Because of the first success and effectiveness in interpretation of the visual system, the AVS can probably be used to help us understand other mammalian perception systems that also encode in cortical circuits, such as olfaction, taste, and touch.
- A very biologically based dendritic neural network algorithm for grayscale motion direction detection, namely AVS, is proposed for the first time.
- The AVS is verified to be an advanced and very efficient motion direction detector based on the mammalian DS circuit. It first achieves the detection for grayscale images and has a extremely high accuracy.
- The other superiorities are also verified, such as, high noise immunity in some high complex environments, no need for learning, no parameter, easy to hardware implement, and high interpretablility.
2. Material and Method
2.1. Dendritic Neuron Model
2.1.1. Synaptic Layer
2.1.2. Dendrite Layer
2.1.3. Membrane Layer
2.1.4. Soma Layer
2.1.5. Structure of Dendritic Neuronal Model
2.2. Direction-Selective Pathway and Visual Cortex Responses
2.3. Local Motion Direction Detection Neurons
2.3.1. Local Receptive Fields
2.3.2. Implement of Dendritic Neuronal Model
2.3.3. Eight Types of Local Motion Direction Detection Neurons
2.3.4. Scan
2.4. Global Motion Direction Detection Neurons
Algorithm 1: AVS. |
Input: 2 grayscale images Output: the global motion direction occuring in the input images
|
3. Experiment
3.1. Performance
3.2. Comparing the Performance of CNN
3.3. Performance in Complex Environments
4. Discussion and Conclusions
- BCs have ON-OFF response feedback mechanisms that can respond instantly to the changing phenomenon of local light sources;
- HCs have asymmetric lateral connection structures and inhibitory signal feedback communication mechanism, which can complete the exchange of light information between the central PC and the surrounding PCs;
- The dendritic neurons of the DS pathway in the retina have nonlinear computational properties;
- According to neuroscientific knowledge, neurons can only complete extremely simple computations;
- The existence of local receptive fields;
- The superposition of excitation from local to global neurons;
- A known highly biologically sound dendritic neuron model for modeling the DS pathway;
- Specific neurons in the brain cortex respond more strongly to specific directions of motion occurring in the receptive field than to other directions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | Linear dichroism |
References
- Sporns, O. Networks of the Brain; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Fiske, S.T.; Taylor, S.E. Social Cognition; Mcgraw-Hill Book Company: New York, NY, USA, 1991. [Google Scholar]
- Medina, J.J.; Hanlon, D. 12 Principles for Surviving and Thriving at Work, Home and School; Pear Press: Seattle, WA, USA, 2009. [Google Scholar]
- Viviani, P.; Aymoz, C. Colour, form, and movement are not perceived simultaneously. Vis. Res. 2001, 41, 2909–2918. [Google Scholar] [CrossRef]
- Mauss, A.S.; Vlasits, A.; Borst, A.; Feller, M. Visual circuits for direction selectivity. Annu. Rev. Neurosci. 2017, 40, 211. [Google Scholar] [CrossRef] [PubMed]
- Vaney, D.I.; Sivyer, B.; Taylor, W.R. Direction selectivity in the retina: Symmetry and asymmetry in structure and function. Nat. Rev. Neurosci. 2012, 13, 194–208. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, N.R.; Scasny, A.J.; Kolodkin, A.L. Development of the vertebrate retinal direction-selective circuit. Dev. Biol. 2021, 477, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Ohki, K.; Chung, S.; Ch’ng, Y.H.; Kara, P.; Reid, R.C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 2005, 433, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Lipin, M.Y.; Taylor, W.R.; Smith, R.G. Inhibitory input to the direction-selective ganglion cell is saturated at low contrast. J. Neurophysiol. 2015, 114, 927–941. [Google Scholar] [CrossRef]
- Sethuramanujam, S.; McLaughlin, A.J.; DeRosenroll, G.; Hoggarth, A.; Schwab, D.J.; Awatramani, G.B. A central role for mixed acetylcholine/GABA transmission in direction coding in the retina. Neuron 2016, 90, 1243–1256. [Google Scholar] [CrossRef]
- Chapot, C.A.; Euler, T.; Schubert, T. How do horizontal cells ‘talk’ to cone photoreceptors? Different levels of complexity at the cone–horizontal cell synapse. J. Physiol. 2017, 595, 5495–5506. [Google Scholar] [CrossRef]
- Wei, W.; Feller, M.B. Organization and development of direction-selective circuits in the retina. Trends Neurosci. 2011, 34, 638–645. [Google Scholar] [CrossRef]
- Srinivasan, M. Generalized gradient schemes for the measurement of two-dimensional image motion. Biol. Cybern. 1990, 63, 421–431. [Google Scholar] [CrossRef]
- Hassenstein, B.; Reichardt, W. Systemtheoretische analyse der zeit-, reihenfolgen-und vorzeichenauswertung bei der bewegungsperzeption des rüsselkäfers chlorophanus. Z. Naturforschung B 1956, 11, 513–524. [Google Scholar] [CrossRef]
- Reichardt, W. Autocorrelation, a principle for evaluation of sensory information by the central nervous system. In Symposium on Principles of Sensory Communication 1959; MIT Press: Cambridge, MA, USA, 1961; pp. 303–317. [Google Scholar]
- Reichardt, W. Evaluation of optical motion information by movement detectors. J. Comp. Physiol. A 1987, 161, 533–547. [Google Scholar] [CrossRef]
- Van Santen, J.P.; Sperling, G. Elaborated reichardt detectors. JOSA A 1985, 2, 300–321. [Google Scholar] [CrossRef] [PubMed]
- Borst, A.; Egelhaaf, M. Principles of visual motion detection. Trends Neurosci. 1989, 12, 297–306. [Google Scholar] [CrossRef]
- Adelson, E.H.; Bergen, J.R. Spatiotemporal energy models for the perception of motion. JOSA A 1985, 2, 284–299. [Google Scholar] [CrossRef]
- Euler, T.; Detwiler, P.B.; Denk, W. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 2002, 418, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Reiff, D.F.; Plett, J.; Mank, M.; Griesbeck, O.; Borst, A. Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila. Nat. Neurosci. 2010, 13, 973–978. [Google Scholar] [CrossRef]
- Elyada, Y.M.; Haag, J.; Borst, A. Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons. Nat. Neurosci. 2009, 12, 327–332. [Google Scholar] [CrossRef]
- Poleg-Polsky, A.; Diamond, J.S. Imperfect space clamp permits electrotonic interactions between inhibitory and excitatory synaptic conductances, distorting voltage clamp recordings. PLoS ONE 2011, 6, e19463. [Google Scholar] [CrossRef]
- Briggman, K.L.; Helmstaedter, M.; Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature 2011, 471, 183–188. [Google Scholar] [CrossRef]
- Schachter, M.J.; Oesch, N.; Smith, R.G.; Taylor, W.R. Dendritic spikes amplify the synaptic signal to enhance detection of motion in a simulation of the direction-selective ganglion cell. PLoS Comput. Biol. 2010, 6, e1000899. [Google Scholar] [CrossRef] [PubMed]
- Hausselt, S.E.; Euler, T.; Detwiler, P.B.; Denk, W. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells. PLoS Biol. 2007, 5, e185. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Todo, Y.; Tang, Z. Mechanism of Motion Direction Detection Based on Barlow’s Retina Inhibitory Scheme in Direction-Selective Ganglion Cells. Electronics 2021, 10, 1663. [Google Scholar] [CrossRef]
- Tang, C.; Todo, Y.; Ji, J.; Tang, Z. A novel motion direction detection mechanism based on dendritic computation of direction-selective ganglion cells. Knowl.-Based Syst. 2022, 241, 108205. [Google Scholar] [CrossRef]
- Hubel, D.H. Exploration of the primary visual cortex, 1955–78. Nature 1982, 299, 515–524. [Google Scholar] [CrossRef]
- Hubel, D.H.; Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 1962, 160, 106. [Google Scholar] [CrossRef]
- Hartline, H.K. The receptive fields of optic nerve fibers. Am. J. Physiol.-Leg. Content 1940, 130, 690–699. [Google Scholar] [CrossRef]
- Barlow, H.; Levick, W.R. The mechanism of directionally selective units in rabbit’s retina. J. Physiol. 1965, 178, 477. [Google Scholar] [CrossRef]
- Borst, A.; Euler, T. Seeing things in motion: Models, circuits, and mechanisms. Neuron 2011, 71, 974–994. [Google Scholar] [CrossRef]
- Todo, Y.; Tang, Z.; Todo, H.; Ji, J.; Yamashita, K. Neurons with multiplicative interactions of nonlinear synapses. Int. J. Neural Syst. 2019, 29, 1950012. [Google Scholar] [CrossRef]
- Wasserman, P.D. Neural Computing: Theory and Practice; Van Nostrand Reinhold Co.: Washington, DC, USA, 1989. [Google Scholar]
- Koch, C.; Poggio, T.; Torre, V. Nonlinear interactions in a dendritic tree: Localization, timing, and role in information processing. Proc. Natl. Acad. Sci. USA 1983, 80, 2799–2802. [Google Scholar] [CrossRef] [PubMed]
- Koch, C.; Poggio, T.; Torre, V. Retinal ganglion cells: A functional interpretation of dendritic morphology. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1982, 298, 227–263. [Google Scholar] [PubMed]
- Taylor, W.R.; He, S.; Levick, W.R.; Vaney, D.I. Dendritic computation of direction selectivity by retinal ganglion cells. Science 2000, 289, 2347–2350. [Google Scholar] [CrossRef] [PubMed]
- Segev, I. Sound grounds for computing dendrites. Nature 1998, 393, 207–208. [Google Scholar] [CrossRef]
- Todo, Y.; Tamura, H.; Yamashita, K.; Tang, Z. Unsupervised learnable neuron model with nonlinear interaction on dendrites. Neural Netw. 2014, 60, 96–103. [Google Scholar] [CrossRef]
- Hartline, H.K. The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am. J. Physiol.-Leg. Content 1938, 121, 400–415. [Google Scholar] [CrossRef]
- Barlow, H.B.; Hill, R.M. Selective sensitivity to direction of movement in ganglion cells of the rabbit retina. Science 1963, 139, 412–414. [Google Scholar] [CrossRef]
- Liu, X.; Hirano, A.A.; Sun, X.; Brecha, N.C.; Barnes, S. Calcium channels in rat horizontal cells regulate feedback inhibition of photoreceptors through an unconventional GABA-and pH-sensitive mechanism. J. Physiol. 2013, 591, 3309–3324. [Google Scholar] [CrossRef]
- Puller, C.; Haverkamp, S.; Neitz, M.; Neitz, J. Synaptic elements for GABAergic feed-forward signaling between HII horizontal cells and blue cone bipolar cells are enriched beneath primate S-cones. PLoS ONE 2014, 9, e88963. [Google Scholar] [CrossRef]
- Hoon, M.; Sinha, R.; Okawa, H.; Suzuki, S.C.; Hirano, A.A.; Brecha, N.; Rieke, F.; Wong, R.O. Neurotransmission plays contrasting roles in the maturation of inhibitory synapses on axons and dendrites of retinal bipolar cells. Proc. Natl. Acad. Sci. USA 2015, 112, 12840–12845. [Google Scholar] [CrossRef]
- Vardi, N.; Sterling, P. Subcellular localization of GABAA receptor on bipolar cells in macaque and human retina. Vis. Res. 1994, 34, 1235–1246. [Google Scholar] [CrossRef]
- Vardi, N.; Zhang, L.L.; Payne, J.A.; Sterling, P. Evidence that different cation chloride cotransporters in retinal neurons allow opposite responses to GABA. J. Neurosci. 2000, 20, 7657–7663. [Google Scholar] [CrossRef] [PubMed]
- Duebel, J.; Haverkamp, S.; Schleich, W.; Feng, G.; Augustine, G.J.; Kuner, T.; Euler, T. Two-photon imaging reveals somatodendritic chloride gradient in retinal ON-type bipolar cells expressing the biosensor Clomeleon. Neuron 2006, 49, 81–94. [Google Scholar] [CrossRef] [PubMed]
- VanLeeuwen, M.; Fahrenfort, I.; Sjoerdsma, T.; Numan, R.; Kamermans, M. Lateral gain control in the outer retina leads to potentiation of center responses of retinal neurons. J. Neurosci. 2009, 29, 6358–6366. [Google Scholar] [CrossRef]
- Van Hateren, H. A cellular and molecular model of response kinetics and adaptation in primate cones and horizontal cells. J. Vis. 2005, 5, 5. [Google Scholar] [CrossRef]
- Van Hateren, J. A model of spatiotemporal signal processing by primate cones and horizontal cells. J. Vis. 2007, 7, 3. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Object Scale | Motion Direction | ↑ | ↗ | → | ↘ | ↓ | ↙ | ← | ↖ | Total |
---|---|---|---|---|---|---|---|---|---|---|
1-pixel | No. of samples | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 10,000 |
Correct No. | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 10,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
2-pixel | No. of samples | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 10,000 |
Correct No. | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 10,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
4-pixel | No. of samples | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 10,000 |
Correct No. | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 10,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
8-pixel | No. of samples | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 10,000 |
Correct No. | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 10,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
16-pixel | No. of samples | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 10,000 |
Correct No. | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 10,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
32-pixel | No. of samples | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 10,000 |
Correct No. | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 10,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
64-pixel | No. of samples | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 10,000 |
Correct No. | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 10,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
128-pixel | No. of samples | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 10,000 |
Correct No. | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 10,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
256-pixel | No. of samples | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 10,000 |
Correct No. | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 10,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
512-pixel | No. of samples | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 10,000 |
Correct No. | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 10,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
Object Scale | AVS | CNN |
---|---|---|
1-pixel | 100% | 65.48% |
2-pixel | 100% | 71.58% |
4-pixel | 100% | 76.73% |
8-pixel | 100% | 77.92% |
16-pixel | 100% | 83.07% |
32-pixel | 100% | 86.22% |
64-pixel | 100% | 89.63% |
128-pixel | 100% | 86.8% |
256-pixel | 100% | 90.4% |
512-pixel | 100% | 91.97% |
Mean | 100% | 81.98% |
Noise Type | 10% | 20% | 30% | |||
---|---|---|---|---|---|---|
Proportion | AVS | CNN | AVS | CNN | AVS | CNN |
1-pixel | 92.5% | 13.18% | 89% | 13.37% | 82% | 13.13% |
2-pixel | 94.5% | 13.15% | 91.5% | 13.08% | 86.5% | 12.82% |
4-pixel | 97.5% | 16.40% | 94% | 13.83% | 96.5% | 13.35% |
8-pixel | 100% | 17.78% | 99.5% | 15.53% | 99% | 15.70% |
16-pixel | 100% | 20.65% | 100% | 18.65% | 100% | 15.67% |
32-pixel | 100% | 26.03% | 100% | 21.82% | 100% | 18.35% |
64-pixel | 100% | 32.68% | 100% | 27.70% | 100% | 23.70% |
128-pixel | 100% | 42.70% | 100% | 33.20% | 100% | 27.80% |
256-pixel | 100% | 55.20% | 100% | 42.47% | 100% | 37.65% |
512-pixel | 100% | 69.70% | 100% | 55.88% | 100% | 52.22% |
Mean | 98.45% | 30.75% | 97.4% | 25.55% | 96.4% | 23.04% |
Noise Type | 10% | 20% | 30% | |||
---|---|---|---|---|---|---|
Proportion | AVS | CNN | AVS | CNN | AVS | CNN |
1-pixel | 29.00% | 12.68% | 18.50% | 12.22% | 19.00% | 12.45% |
2-pixel | 37.00% | 13.58% | 27.50% | 13.45% | 24.00% | 12.72% |
4-pixel | 61.00% | 14.42% | 30.00% | 13.17% | 29.50% | 12.75% |
8-pixel | 78.50% | 16.13% | 46.50% | 14.33% | 39.00% | 14.05% |
16-pixel | 93.00% | 18.95% | 78.00% | 16.78% | 62.00% | 14.80% |
32-pixel | 99.50% | 22.72% | 96.00% | 19.08% | 83.50% | 17.17% |
64-pixel | 100.00% | 29.33% | 100.00% | 23.18% | 98.50% | 18.45% |
128-pixel | 100.00% | 40.70% | 100.00% | 28.80% | 99.50% | 25.53% |
256-pixel | 100.00% | 45.83% | 100.00% | 39.28% | 100.00% | 33.03% |
512-pixel | 100.00% | 64.13% | 100.00% | 53.00% | 100.00% | 46.23% |
Mean | 79.80% | 27.85% | 69.65% | 23.33% | 65.50% | 20.72% |
Noise Type | 10% | 20% | 30% | |||
---|---|---|---|---|---|---|
Proportion | AVS | CNN | AVS | CNN | AVS | CNN |
1-pixel | 77.5% | 13.22% | 51% | 12.98% | 43% | 12.80% |
2-pixel | 77.5% | 13.60% | 64% | 13.20% | 50.5% | 12.42% |
4-pixel | 93% | 15.18% | 79% | 14.53% | 67% | 12.67% |
8-pixel | 96% | 17.93% | 91.5% | 15.38% | 79.5% | 13.88% |
16-pixel | 100% | 20.03% | 98.5% | 16.97% | 95% | 14.80% |
32-pixel | 100% | 24.28% | 100% | 18.83% | 99% | 17.22% |
64-pixel | 100% | 30.87% | 100% | 21.57% | 99.5% | 18.28% |
128-pixel | 100% | 36.35% | 100% | 27.17% | 100% | 22.63% |
256-pixel | 100% | 46.25% | 100% | 32.88% | 100% | 25.38% |
512-pixel | 100% | 55.15% | 100% | 39.95% | 100% | 27.77% |
Mean | 94.4% | 27.29% | 88.4% | 21.35% | 83.35% | 17.79% |
Noise Type | 10% | 20% | 30% | |||
---|---|---|---|---|---|---|
Proportion | AVS | CNN | AVS | CNN | AVS | CNN |
1-pixel | 23% | 12.87% | 18.5% | 13.23% | 10% | 12.32% |
2-pixel | 36% | 13.27% | 19.5% | 12.75% | 16% | 13.02% |
4-pixel | 51.5% | 13.75% | 29% | 13.55% | 29.5% | 13.47% |
8-pixel | 73.5% | 15.40% | 43.5% | 14.40% | 31% | 12.87% |
16-pixel | 93.5% | 17.57% | 65.5% | 15.60% | 50% | 13.50% |
32-pixel | 98.5% | 22.13% | 89.5% | 16.63% | 65.5% | 14.33% |
64-pixel | 100% | 27.53% | 100% | 19.85% | 89.5% | 16.53% |
128-pixel | 100% | 31.48% | 100% | 21.28% | 98.5% | 17.42% |
256-pixel | 100% | 41.87% | 100% | 30.53% | 100% | 22.57% |
512-pixel | 100% | 46.45% | 100% | 33.53% | 100% | 28.43% |
Mean | 77.6% | 24.23% | 66.55% | 19.14% | 59% | 16.45% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, S.; Todo, Y.; Tang, Z.; Li, B.; Zhang, Z.; Inoue, R. A Novel Artificial Visual System for Motion Direction Detection in Grayscale Images. Mathematics 2022, 10, 2975. https://doi.org/10.3390/math10162975
Tao S, Todo Y, Tang Z, Li B, Zhang Z, Inoue R. A Novel Artificial Visual System for Motion Direction Detection in Grayscale Images. Mathematics. 2022; 10(16):2975. https://doi.org/10.3390/math10162975
Chicago/Turabian StyleTao, Sichen, Yuki Todo, Zheng Tang, Bin Li, Zhiming Zhang, and Riku Inoue. 2022. "A Novel Artificial Visual System for Motion Direction Detection in Grayscale Images" Mathematics 10, no. 16: 2975. https://doi.org/10.3390/math10162975
APA StyleTao, S., Todo, Y., Tang, Z., Li, B., Zhang, Z., & Inoue, R. (2022). A Novel Artificial Visual System for Motion Direction Detection in Grayscale Images. Mathematics, 10(16), 2975. https://doi.org/10.3390/math10162975