Limit Cycles and Integrability of a Class of Quintic System
Abstract
:1. Introduction
2. Focal Values and Bifurcation of Limit Cycles
3. Center Conditions
4. Isochronous Center Conditions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bautin, N.N. On the number of limit cycles appearing with variation of the coefficients from an equilibrium state of the type of a focus or a center. Mat. Sb. (N.S.) 1952, 30, 181–196. (In Russian) [Google Scholar]
- James, E.; Lloyd, N.G. A cubic system with eight small-amplitude limit cycles. IMA J. Appl. Math. 1991, 47, 163–171. [Google Scholar] [CrossRef]
- Yu, P.; Corless, R.M. Symbolic computation of limit cycles associated with Hilbert¡s 16th problem. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 4041–4056. [Google Scholar] [CrossRef]
- Chen, C.; Corless, R.M.; Maza, M.; Yu, P.; Zhang, Y. A modular regular chains method and its application to dynamical systems. Int. J. Bifurc. Chaos Appl. Sci. Eng. 2013, 23, 1350154. [Google Scholar] [CrossRef]
- Lloyd, N.; Pearson, J. A cubic differential system with nine limit cycles. J. Appl. Anal. Comput. 2012, 2, 293–304. [Google Scholar]
- Żoła̧dek, H. Eleven small limit cycles in a cubic vector field. Nonlinearity 1995, 8, 843–860. [Google Scholar] [CrossRef]
- Bondar, Y.L.; Sadovskii, A.P. On a Żoła̧dek theorem. Differ. Equ. 2006, 44, 274–277. [Google Scholar] [CrossRef]
- Christopher, C. Estimating limit cycle bifurcation from centers. In Trends in Mathematics: Differential Equations with Symbolic Computation; Birkhauser: Basel, Switzerland, 2006; pp. 23–35. [Google Scholar]
- Yu, P.; Tian, Y. Twelve limit cycles around a singular point in a planar cubic-degree polynomial system. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 2690–2705. [Google Scholar] [CrossRef]
- Huang, W.; Chen, A.; Xu, Q. Bifurcation of limit cycles and isochronous centers for a quartic system. Int. J. Bifurc. Chaos Appl. Sci. Eng. 2013, 23, 1350171. [Google Scholar] [CrossRef]
- Fercec, B.; Gine, J.; Romanovski, V.G.; Edneral, V. Integrability of complex planar systems with homogeneous nonlinearities. J. Math. Anal. Appl. 2016, 434, 894–914. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J. Bifurcations of limit cycles and center problem for a class of cubic nilpotent system. Int. J. Bifurc. Chaos Appl. Sci. Eng. 2010, 20, 2579–2584. [Google Scholar] [CrossRef]
- Qiu, J.; Li, F. Two kinds of bifurcation phenomena in a quartic system. Adv. Differ. Equ. 2015, 2015, 29. [Google Scholar] [CrossRef]
- Li, H.; Jin, Y. Two different distributions of limit cycles in a quintic system. J. Nonlinear Sci. Appl. 2015, 8, 255–266. [Google Scholar] [CrossRef]
- Chen, L.; Wang, M. The relative position and number of limit cycles of a quadratic differential system. Acta Math. Sin. (Chin. Ser.) 1979, 22, 751–758. [Google Scholar]
- Shi, S. A concrete example of the existence of four limit cycles for quadratic systems. Sci. Sin. 1980, 23, 16–21. [Google Scholar]
- Li, C.; Liu, C.; Yang, J. A cubic system with thirteen limit cycles. J. Differ. Equ. 2009, 246, 3609–3619. [Google Scholar] [CrossRef]
- Yang, J.; Han, M.; Li, J.; Yu, P. Existence conditions of thirteen limit cycles in cubic system. Int. J. Bifurc. Chaos Appl. Sci. Eng. 2010, 20, 2569–2577. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J. Z2-Equivariant cubic system which yields 13 limit cycles. Acta Math. Appl. Sin. Engl. Ser. 2014, 30, 781–800. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; Du, C. Small limit cycles bifurcating from fine focus points in quartic order Z3-equivariant vector fields. J. Math. Anal. Appl. 2008, 337, 524–536. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, Y.; Han, M. Bifurcations of the limit cycles in a Z3-equivariant quartic planar vector field. Chaos Solitons Fractals 2008, 38, 1177–1186. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y. New results on the study of Zq-equivariant planar polynomial vector fields. Qual. Theory Dyn. Syst. 2010, 9, 167–219. [Google Scholar] [CrossRef]
- Amelikin, B.B.; Lukashivich, H.A.; Sadovski, A.P. Nonlinear Oscillations in Second Order Systems; BGY lenin.B. I. Press: Minsk, Belarus, 1982. (In Russian) [Google Scholar]
- Liu, Y.R.; Li, J.B.; Huang, W.T. Planar Dynamical Systems; De Gruyter: Berlin, Germany, 2014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Zhang, D.; Li, F. Limit Cycles and Integrability of a Class of Quintic System. Mathematics 2022, 10, 2993. https://doi.org/10.3390/math10162993
Tang Y, Zhang D, Li F. Limit Cycles and Integrability of a Class of Quintic System. Mathematics. 2022; 10(16):2993. https://doi.org/10.3390/math10162993
Chicago/Turabian StyleTang, Yanli, Dongmei Zhang, and Feng Li. 2022. "Limit Cycles and Integrability of a Class of Quintic System" Mathematics 10, no. 16: 2993. https://doi.org/10.3390/math10162993
APA StyleTang, Y., Zhang, D., & Li, F. (2022). Limit Cycles and Integrability of a Class of Quintic System. Mathematics, 10(16), 2993. https://doi.org/10.3390/math10162993