Parity Deformed Tavis-Cummings Model: Entanglement, Parameter Estimation and Statistical Properties
Abstract
:1. Introduction
2. Physical Model
3. Quantum Measures and Numerical Results
3.1. Atomic Inversion
3.2. Qubits–Field Entanglement
3.3. Qubit–Qubit Entanglement
3.4. Quantum Fisher Information
3.5. Field Photon Statistics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Alber, G.; Beth, T.; Horodecki, M.; Horodecki, P.; Horodecki, R.; Rotteler, M.; Weinfurter, H.; Zeilinger, R.A. Quantum Information; Springer: Berlin, Germany, 2001; Chapter 5. [Google Scholar]
- Joo, J.; Munro, W.J.; Spiller, T.P. Quantum metrology with entangled coherent states. Phys. Rev. Lett. 2011, 107, 083601. [Google Scholar] [CrossRef] [PubMed]
- Berrada, K.; Abdel-Khalek, S.; Raymond Ooi, C.H. Quantum metrology with entangled spin-coherent states of two modes. Phys. Rev. A 2012, 86, 033823. [Google Scholar] [CrossRef]
- Berrada, K. Quantum metrology with SU (1, 1) coherent states in the presence of nonlinear phase shifts. Phys. Rev. A 2013, 88, 013817. [Google Scholar] [CrossRef]
- Goold, J.; Huber, M.; Riera, A.; del Rio, L.; Skrzypczyk, P. The role of quantum information in thermodynamics—A topical review. J. Phys. A Math. Theor. 2016, 49, 143001. [Google Scholar] [CrossRef]
- Kibe, T.; Mukhopadhyay, A.; Roy, P. Quantum Thermodynamics of Holographic Quenches and Bounds on the Growth of Entanglement from the Quantum Null Energy Condition. Phys. Rev. Lett. 2022, 128, 191602. [Google Scholar] [CrossRef]
- Liu, C.; Tu, T.; Li, P.-Y.; Liu, X.; Zhu, X.-Y.; Zhou, Z.-Q.; Li, C.-F.; Guo, G.-C. Towards entanglement distillation between atomic ensembles using high-fidelity spin operations. Commun. Phys. 2022, 5, 67. [Google Scholar] [CrossRef]
- Castelano, L.K.; Fanchini, F.F.; Berrada, K. Open quantum system description of singlet-triplet qubits in quantum dots. Phys. Rev. B 2016, 94, 235433. [Google Scholar] [CrossRef]
- Pfaff, W.; Taminiau, T.H.; Robledo, L.; Bernien, H.; Markham, M.; Twitchen, D.J.; Hanson, R. Demonstration of entanglement-by-measurement of solid-state qubits. Nat. Phys. 2013, 9, 29. [Google Scholar] [CrossRef]
- Aldaghfag, S.A.; Berrada, K.; Abdel-Khalek, S. Entanglement and photon statistics of two dipole–dipole coupled superconducting qubits with Kerr-like nonlinearitie. Results Phys. 2020, 16, 102978. [Google Scholar] [CrossRef]
- Abdel-Khalek, S.; Berrada, K.; Aldaghfag, S.A. Quantum correlations and non-classical properties for two superconducting qubits interacting with a quantized field in the context of deformed Heisenberg algebra. Chaos Solitons Fractals 2021, 143, 110466. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865. [Google Scholar] [CrossRef]
- Eberly, J.H.; Yu, T. The end of an entanglement. Science 2007, 316, 555. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Eberly, J.H. Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 2006, 97, 140403. [Google Scholar] [CrossRef]
- Shrödinger, E. Der stetige Übergang von der Mikro-zur Makromechanik. Naturwissenschafter 1926, 14, 664. [Google Scholar] [CrossRef]
- Glauber, R.J. Coherent and incoherent states of the radiation field. Phys. Rev. 1963, 131, 2766–2788. [Google Scholar] [CrossRef]
- Perelomov, A.M. Generalized Coherent States and Their Applications; Springer: Berlin, Germany, 1986. [Google Scholar]
- Ali, S.T.; Antoine, J.P.; Gazeau, J.P. Coherent States, Wavelets and Their Generalizations; Springer: Berlin, Germany, 2000. [Google Scholar]
- Dodonov, V.V.; Malkin, I.A.; Man’ko, V.I. Even and odd coherent states and excitations of a singular oscillator. Physica 1974, 72, 597. [Google Scholar] [CrossRef]
- Castaños, O.; López-Peña, R.; Man’ko, V.I.J. Crystallized Schrödinger cat states. Russ. Laser Res. 1995, 16, 477. [Google Scholar] [CrossRef]
- Castaños, O.; López-Saldívar, J.A. Dynamics of Schrödinger cat states. J. Phys. Conf. Ser. 2012, 380, 012017. [Google Scholar] [CrossRef]
- López-Saldívar, J.A. General superposition states associated to the rotational and inversion symmetries in the phase space. Phys. Scr. 2020, 95, 065206. [Google Scholar] [CrossRef]
- Man’ko, V.I.; Marmo, G.; Sudarshan, E.C.G.; Zaccaria, F. f -Oscillators and nonlinear coherent states. Phys. Scr. 1997, 55, 528. [Google Scholar] [CrossRef]
- Berrada, K.; Eleuch, H. Noncommutative deformed cat states under decoherence. Phys. Rev. D 2019, 100, 016020. [Google Scholar] [CrossRef]
- Berrada, K.; Abdel-Khalek, S.; Raymond Ooi, C.H. Geometric phase and entanglement for a single qubit interacting with deformed-states superposition. Quantum Inform. Process. 2013, 12, 2177. [Google Scholar] [CrossRef]
- Berrada, K.; Baz, M.E.; Hassouni, Y. Generalized spin coherent states: Construction and some physical properties. J. Stat. Phys. 2011, 142, 510. [Google Scholar] [CrossRef]
- Berrada, K.; Baz, M.E. On the construction of generalized su (1, 1) coherent states. Hassouni Rep. Math. Phys. 2011, 68, 23. [Google Scholar] [CrossRef]
- Fisher, R.A. Theory of statistical estimation. Math. Proc. Camb. Philos. Soc. 1925, 22, 700. [Google Scholar] [CrossRef]
- Huelga, S.F.; Macchiavello, C.; Pellizzari, T.; Ekert, A.K.; Plenio, M.B.; Cirac, J.I. Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 1997, 79, 3865. [Google Scholar] [CrossRef]
- Jozsa, R.; Abrams, D.S.; Dowling, J.P.; Williams, C.P. Quantum clock synchronization based on shared prior entanglement. Phys. Rev. Lett. 2000, 85, 2010. [Google Scholar] [CrossRef]
- Peters, A.; Chung, K.Y.; Chu, S. Measurement of gravitational acceleration by dropping atoms. Nature 1999, 400, 849. [Google Scholar] [CrossRef]
- Helstrom, C.W. Quantum Detection and Estimation Theory; Academic Press, Inc.: New York, NY, USA, 1976. [Google Scholar]
- Braunstein, S.L.; Caves, C.M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 1994, 72, 3439. [Google Scholar] [CrossRef]
- Braunstein, S.L.; Caves, C.M.; Milburn, G.J. Generalized uncertainty relations: Theory, examples, and Lorentz invariance. Ann. Phys. 1996, 247, 135. [Google Scholar] [CrossRef] [Green Version]
- Boixo, S.; Monras, A. Operational interpretation for global multipartite entanglement. Phys. Rev. Lett. 2008, 100, 100503. [Google Scholar] [CrossRef] [PubMed]
- Pezze, L.; Smerzi, A. Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 2009, 102, 100401. [Google Scholar] [CrossRef] [PubMed]
- Berrada, K. Non-Markovian effect on the precision of parameter estimation. Phys. Rev. A 2013, 88, 035806. [Google Scholar] [CrossRef]
- Ji, Z.; Wang, G.; Duan, R.; Feng, Y. Parameter estimation of quantum channels. IEEE Trans. Inf. Theory 2008, 54, 5172. [Google Scholar] [CrossRef]
- Fujiwara, A. Quantum channel identification problem. Phys. Rev. A 2001, 63, 042304. [Google Scholar] [CrossRef]
- Monras, A.; Paris, M.G.A. Optimal quantum estimation of loss in bosonic channels. Phys. Rev. Lett. 2007, 98, 160401. [Google Scholar] [CrossRef]
- Invernizzi, C.; Korbman, M.; Venuti, L.C.; Paris, M.G.A. Optimal quantum estimation in spin systems at criticality. Phys. Rev. A 2008, 78, 042106. [Google Scholar] [CrossRef]
- Ma, J.; Wang, X. Fisher information and spin squeezing in the Lipkin-Meshkov-Glick model. Phys. Rev. A 2009, 80, 012318. [Google Scholar] [CrossRef]
- Jaynes, E.; Cummings, F. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 1963, 51, 89. [Google Scholar] [CrossRef]
- Scully, M.O.; Zubairy, M.S. Quantum Optics; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Short, R.; Mandel, L. Observation of Sub-Poissonian Photon Statistics. Phys. Rev. Lett. 1983, 51, 384. [Google Scholar] [CrossRef]
- Singh, S. Field statistics in some generalized Jaynes-Cummings models. Phys. Rev. A 1982, 25, 3206. [Google Scholar] [CrossRef]
- Tavis, M.; Cummings, F.W. Exact solution for an N-molecule—radiation-field Hamiltonian. Phys. Rev. 1968, 170, 379. [Google Scholar] [CrossRef]
- Tessier, T.E.; Deutsch, I.H.; Delgado, A.; Fuentes-Guridi, I. Entanglement sharing in the two-atom Tavis-Cummings model. Phys. Rev. A 2003, 68, 062316. [Google Scholar] [CrossRef]
- López, C.E.; Lastra, F.; Romero, G.; Retamal, J.C. Entanglement properties in the inhomogeneous Tavis-Cummings model. Phys. Rev. A 2007, 75, 022107. [Google Scholar] [CrossRef]
- Guo, J.-L.; Song, H.-S. Entanglement between two Tavis–Cummings atoms with phase decoherence. J. Mod. Opt. 2009, 56, 496. [Google Scholar] [CrossRef]
- Bashkirov, E.K.; Rusakova, M.S. Entanglement for two-atom Tavis–Cummings model with degenerate two-photon transitions in the presence of the Stark shift. Optik 2012, 123, 1694. [Google Scholar] [CrossRef]
- Abdalla, M.S. Statistical properties of a transformed Tavis-Cummings model. Phys. A 1991, 179, 131. [Google Scholar] [CrossRef]
- Chaichian, M.; Ellinas, D.; Kulish, P. Quantum algebra as the dynamical symmetry of the deformed Jaynes-Cummings model. Phys. Rev. Lett. 1990, 65, 980. [Google Scholar] [CrossRef]
- De los Santos-Sanchez, O.; Recamier, J. The f-deformed Jaynes–Cummings model and its nonlinear coherent states. J. Phys. B At. Mol. Opt. Phys. 2012, 45, 015502. [Google Scholar] [CrossRef]
- Dehghani, A.; Mojaveri, B.; Shirin, S.; Faseghandis, S.A. Parity Deformed Jaynes-Cummings Model: Robust Maximally Entangled States. Sci. Rep. 2016, 6, 38069. [Google Scholar] [CrossRef]
- Friedrich, B.; Herschbach, D. Alignment and trapping of molecules in intense laser fields. Phys. Rev. Lett. 1995, 74, 4623. [Google Scholar] [CrossRef] [PubMed]
- Eleuch, H.; Guérin, S.; Jauslin, H.R. Effects of an environment on a cavity-quantum-electrodynamics system controlled by bichromatic adiabatic passage. Phys. Rev. A 2012, 85, 013830. [Google Scholar] [CrossRef]
- Wootters, W.K. Entanglement of formation and concurrence. Quantum Inf. Comput. 2001, 1, 27. [Google Scholar] [CrossRef]
- Mandel, L.; Wolf, E. Optical Coherent and Quantum Optics; Cambridge University Press: Cambridge, UK, 1955. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algarni, M.; Berrada, K.; Abdel-Khalek, S.; Eleuch, H. Parity Deformed Tavis-Cummings Model: Entanglement, Parameter Estimation and Statistical Properties. Mathematics 2022, 10, 3051. https://doi.org/10.3390/math10173051
Algarni M, Berrada K, Abdel-Khalek S, Eleuch H. Parity Deformed Tavis-Cummings Model: Entanglement, Parameter Estimation and Statistical Properties. Mathematics. 2022; 10(17):3051. https://doi.org/10.3390/math10173051
Chicago/Turabian StyleAlgarni, Mariam, Kamal Berrada, Sayed Abdel-Khalek, and Hichem Eleuch. 2022. "Parity Deformed Tavis-Cummings Model: Entanglement, Parameter Estimation and Statistical Properties" Mathematics 10, no. 17: 3051. https://doi.org/10.3390/math10173051
APA StyleAlgarni, M., Berrada, K., Abdel-Khalek, S., & Eleuch, H. (2022). Parity Deformed Tavis-Cummings Model: Entanglement, Parameter Estimation and Statistical Properties. Mathematics, 10(17), 3051. https://doi.org/10.3390/math10173051