A New Type-3 Fuzzy Predictive Approach for Mobile Robots
Abstract
:1. Introduction
2. Kinematic Model
3. Dynamics
4. General View on the Suggested Approach
5. Type-3 FLS
- (1)
- The inputs of FLS are considered as .
- (2)
- (3)
- The rule firing degrees are:
- (4)
- The output of FLS is written as:
6. Predictive Controller
7. Stability Analysis
8. Simulations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Radius | |
Distance | |
Inertia matrix | |
Coriolis matrix | |
G | Gravitational |
Disturbance | |
F | Input matrix |
Input vector | |
Position | |
j-th FS for i-th input | |
, | Upper memberships |
, | Lower memberships |
Center of | |
, | Upper bound of and |
Robot position | |
Control signals |
References
- Chen, C.H.; Jeng, S.Y.; Lin, C.J. Mobile robot wall-following control using fuzzy logic controller with improved differential search and reinforcement learning. Mathematics 2020, 8, 1254. [Google Scholar] [CrossRef]
- Ding, T.; Zhang, Y.; Ma, G.; Cao, Z.; Zhao, X.; Tao, B. Trajectory tracking of redundantly actuated mobile robot by MPC velocity control under steering strategy constraint. Mechatronics 2022, 84, 102779. [Google Scholar] [CrossRef]
- Li, L.; Cao, W.; Yang, H.; Geng, Q. Trajectory tracking control for a wheel mobile robot on rough and uneven ground. Mechatronics 2022, 83, 102741. [Google Scholar] [CrossRef]
- Li, D.; Ge, S.S.; Lee, T.H. Simultaneous Arrival to Origin Convergence: Sliding-Mode Control Through the Norm-Normalized Sign Function. IEEE Trans. Autom. Control 2021, 67, 1966–1972. [Google Scholar] [CrossRef]
- Ou, M.; Sun, H.; Zhang, Z.; Gu, S. Fixed-time trajectory tracking control for nonholonomic mobile robot based on visual servoing. Nonlinear Dyn. 2022, 108, 251–263. [Google Scholar] [CrossRef]
- Li, D.; Ge, S.S.; Lee, T.H. Fixed-time-synchronized consensus control of multiagent systems. IEEE Trans. Control Netw. Syst. 2020, 8, 89–98. [Google Scholar] [CrossRef]
- Jin, X.; Dai, S.L.; Liang, J. Adaptive Constrained Formation Tracking Control for A Tractor-Trailer Mobile Robot Team with Multiple Constraints. IEEE Trans. Autom. Control 2022. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, G.; Wu, Z. Reinforcement Learning-Based Tracking Control for a Three Mecanum Wheeled Mobile Robot. IEEE Trans. Neural Netw. Learn. Syst. 2022. [Google Scholar] [CrossRef]
- Zou, J.T.; Dai, X.Y. The Development of a Visual Tracking System for a Drone to Follow an Omnidirectional Mobile Robot. Drones 2022, 6, 113. [Google Scholar] [CrossRef]
- Zhang, H.; Li, B.; Xiao, B.; Yang, Y.; Ling, J. Nonsingular recursive-structure sliding mode control for high-order nonlinear systems and an application in a wheeled mobile robot. ISA Trans. 2022, in press. [Google Scholar] [CrossRef]
- Yu, R.; Ding, S.; Tian, H.; Chen, Y.H. A hierarchical constraint approach for dynamic modeling and trajectory tracking control of a mobile robot. J. Vib. Control 2022, 28, 564–576. [Google Scholar] [CrossRef]
- Meng, F.; Pang, A.; Dong, X.; Han, C.; Sha, X. H∞ optimal performance design of an unstable plant under bode integral constraint. Complexity 2018, 2018, 4942906. [Google Scholar] [CrossRef]
- Mondal, S.; Ray, R.; Reddy, S.; Nandy, S. Intelligent controller for nonholonomic wheeled mobile robot: A fuzzy path following combination. Math. Comput. Simul. 2022, 193, 533–555. [Google Scholar] [CrossRef]
- Moudoud, B.; Aissaoui, H.; Diany, M. Fuzzy adaptive sliding mode controller for electrically driven wheeled mobile robot for trajectory tracking task. J. Control Decis. 2022, 9, 71–79. [Google Scholar] [CrossRef]
- Cao, G.; Zhao, X.; Ye, C.; Yu, S.; Li, B.; Jiang, C. Fuzzy adaptive PID control method for multi-mecanum-wheeled mobile robot. J. Mech. Sci. Technol. 2022, 36, 2019–2029. [Google Scholar] [CrossRef]
- Abdalla, A.Y.; Abdalla, T.Y. A modified artificial bee colony based fuzzy motion tracking scheme for mobile robot. Bull. Electr. Eng. Inform. 2022, 11, 2160–2168. [Google Scholar] [CrossRef]
- Wu, H.M.; Zaman, M.Q. LiDAR Based Trajectory-Tracking of an Autonomous Differential Drive Mobile Robot Using Fuzzy Sliding Mode Controller. IEEE Access 2022, 10, 33713–33722. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Vu, C.T. Mobile Robot Motion Control Using a Combination of Fuzzy Logic Method and Kinematic Model. In Intelligent Systems and Networks; Springer: Singapore, 2022; pp. 495–503. [Google Scholar]
- Yue, X.; Chen, J.; Li, Y.; Zou, R.; Sun, Z.; Cao, X.; Zhang, S. Path Tracking Control of Skid-steered Mobile Robot on the Slope Based on Fuzzy System and Model Predictive Control. Int. J. Control. Autom. Syst. 2022, 20, 1365–1376. [Google Scholar] [CrossRef]
- Wu, X.; Huang, Y. Adaptive fractional-order non-singular terminal sliding mode control based on fuzzy wavelet neural networks for omnidirectional mobile robot manipulator. ISA Trans. 2022, 121, 258–267. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, Y.H.; Su, C.Y.; Zhao, F. Whole-Body Control of an Autonomous Mobile Manipulator Using Model Predictive Control and Adaptive Fuzzy Technique. IEEE Trans. Fuzzy Syst. 2022. [Google Scholar] [CrossRef]
- Farooq, U.; Saleh, S.O.; Abbas, G.; Asad, M.U.; Rafiq, F. A two loop fuzzy controller for goal directed navigation of mobile robot. In Proceedings of the 2012 International Conference on Emerging Technologies, Islamabad, Pakistan, 8–9 October 2012; pp. 1–6. [Google Scholar]
- Farooq, U.; Hasan, K.; Hanif, A.; Amar, M.; Asad, M.U. Fuzzy logic based path tracking controller for wheeled mobile robots. Int. J. Comput. Electr. Eng. 2014, 6, 77. [Google Scholar] [CrossRef]
- Castillo, O.; Peraza, C.; Ochoa, P.; Amador-Angulo, L.; Melin, P.; Park, Y.; Geem, Z.W. Shadowed Type-2 Fuzzy Systems for Dynamic Parameter Adaptation in Harmony Search and Differential Evolution for Optimal Design of Fuzzy Controllers. Mathematics 2021, 9, 2439. [Google Scholar] [CrossRef]
- Liu, K.; Ke, F.; Huang, X.; Yu, R.; Lin, F.; Wu, Y.; Ng, D.W.K. DeepBAN: A temporal convolution-based communication framework for dynamic WBANs. IEEE Trans. Commun. 2021, 69, 6675–6690. [Google Scholar] [CrossRef]
- Lv, Z.; Yu, Z.; Xie, S.; Alamri, A. Deep learning-based smart predictive evaluation for interactive multimedia-enabled smart healthcare. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2022, 18, 1–20. [Google Scholar] [CrossRef]
- Zou, X.; Zhao, T.; Dian, S. Finite-time adaptive interval type-2 fuzzy tracking control for Mecanum-wheel mobile robots. Int. J. Fuzzy Syst. 2022, 24, 1570–1585. [Google Scholar] [CrossRef]
- Cuevas, F.; Castillo, O.; Cortes, P. Optimal setting of membership functions for interval type-2 fuzzy tracking controllers using a shark smell metaheuristic algorithm. Int. J. Fuzzy Syst. 2022, 24, 799–822. [Google Scholar] [CrossRef]
- Cuevas, F.; Castillo, O.; Cortés-Antonio, P. Design of a Control Strategy Based on Type-2 Fuzzy Logic for Omnidirectional Mobile Robots. J. Mult.-Valued Log. Soft Comput. 2021, 37, 107–136. [Google Scholar]
- Cuevas, F.; Castillo, O.; Cortes-Antonio, P. Optimal design of interval type-2 fuzzy tracking controllers of mobile robots using a metaheuristic algorithm. In Recent Advances of Hybrid Intelligent Systems Based on Soft Computing; Springer: Berlin/Heidelberg, Germany, 2021; pp. 315–341. [Google Scholar]
- Kasmi, B.; Hassam, A. Comparative Study between Fuzzy Logic and Interval Type-2 Fuzzy Logic Controllers for the Trajectory Planning of a Mobile Robot. Eng. Technol. Appl. Sci. Res. 2021, 11, 7011–7017. [Google Scholar] [CrossRef]
- Pour, P.D.; Alsayegh, K.M.; Jaradat, M.A. Type-2 Fuzzy Adaptive PID Controller for Differential Drive Mobile Robot: A Mechatronics Approach. In Proceedings of the 2022 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 21–24 February 2022; pp. 1–6. [Google Scholar]
- Castillo, O. Interval type-2 fuzzy dynamic parameter adaptation in bee colony optimization for autonomous mobile robot navigation. In Recent Developments and the New Direction in Soft-Computing Foundations and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 45–62. [Google Scholar]
- Liu, C.; Wu, D.; Li, Y.; Du, Y. Large-scale pavement roughness measurements with vehicle crowdsourced data using semi-supervised learning. Transp. Res. Part C Emerg. Technol. 2021, 125, 103048. [Google Scholar] [CrossRef]
- Zhong, L.; Fang, Z.; Liu, F.; Yuan, B.; Zhang, G.; Lu, J. Bridging the theoretical bound and deep algorithms for open set domain adaptation. IEEE Trans. Neural Netw. Learn. Syst. 2021. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, F.; Fang, Z.; Yuan, B.; Zhang, G.; Lu, J. Learning from a complementary-label source domain: Theory and algorithms. IEEE Trans. Neural Netw. Learn. Syst. 2021. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Liu, S.; Deng, Y.; Zhang, Y.; Yin, L.; Zheng, W. An improved method for soft tissue modeling. Biomed. Signal Process. Control 2021, 65, 102367. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Castillo, O.; Band, S.S.; Mosavi, A. A novel fractional-order multiple-model type-3 fuzzy control for nonlinear systems with unmodeled dynamics. Int. J. Fuzzy Syst. 2021, 23, 1633–1651. [Google Scholar] [CrossRef]
- Vafaie, R.H.; Mohammadzadeh, A.; Piran, M. A new type-3 fuzzy predictive controller for MEMS gyroscopes. Nonlinear Dyn. 2021, 106, 381–403. [Google Scholar] [CrossRef]
- Gheisarnejad, M.; Mohammadzadeh, A.; Farsizadeh, H.; Khooban, M.H. Stabilization of 5G telecom converter-based deep type-3 fuzzy machine learning control for telecom applications. IEEE Trans. Circuits Syst. II Express Briefs 2021, 69, 544–548. [Google Scholar] [CrossRef]
- Castillo, O.; Castro, J.R.; Pulido, M.; Melin, P. Interval type-3 fuzzy aggregators for ensembles of neural networks in COVID-19 time series prediction. Eng. Appl. Artif. Intell. 2022, 114, 105110. [Google Scholar] [CrossRef]
- Qasem, S.N.; Ahmadian, A.; Mohammadzadeh, A.; Rathinasamy, S.; Pahlevanzadeh, B. A type-3 logic fuzzy system: Optimized by a correntropy based Kalman filter with adaptive fuzzy kernel size. Inf. Sci. 2021, 572, 424–443. [Google Scholar] [CrossRef]
ℜ | m | 0.10 | - |
L | m | 0.50 | - |
w | rad/s | −1 | 1 |
d | m | 0.01 | 0.30 |
Kg m | 6 | 12 | |
kg | 87 | 181 | |
kg | 1.50 | - | |
Kg m | 0.003 | - | |
u | m/s | 0 | 1 |
Kg m | 0.008 | - |
Variance | FLS | ||
---|---|---|---|
0 | IT2-FLS | 4.2414 | 5.1804 |
T3-FLS | 1.8174 | 2.1140 | |
0.05 | IT2-FLS | 2.2527 | 3.2128 |
T3-FLS | 1.7624 | 1.2441 | |
0.1 | IT2-FLS | 5.3274 | 6.2230 |
T3-FLS | 1.79984 | 1.7779 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, G.; Wang, F.; Zhang, J.; Alattas, K.A.; Mohammadzadeh, A.; The Vu, M. A New Type-3 Fuzzy Predictive Approach for Mobile Robots. Mathematics 2022, 10, 3186. https://doi.org/10.3390/math10173186
Hua G, Wang F, Zhang J, Alattas KA, Mohammadzadeh A, The Vu M. A New Type-3 Fuzzy Predictive Approach for Mobile Robots. Mathematics. 2022; 10(17):3186. https://doi.org/10.3390/math10173186
Chicago/Turabian StyleHua, Guoxin, Fei Wang, Jianhui Zhang, Khalid A. Alattas, Ardashir Mohammadzadeh, and Mai The Vu. 2022. "A New Type-3 Fuzzy Predictive Approach for Mobile Robots" Mathematics 10, no. 17: 3186. https://doi.org/10.3390/math10173186
APA StyleHua, G., Wang, F., Zhang, J., Alattas, K. A., Mohammadzadeh, A., & The Vu, M. (2022). A New Type-3 Fuzzy Predictive Approach for Mobile Robots. Mathematics, 10(17), 3186. https://doi.org/10.3390/math10173186