Sharpe-Ratio Portfolio in Controllable Markov Chains: Analytic and Algorithmic Approach for Second Order Cone Programming
Abstract
:1. Introduction
1.1. Brief Review
1.2. Related Work
1.3. Main Results
- Consider the problem of Sharpe-ratio portfolio selection.
- Formulate a regularization approach based on the penalty technique.
- Compute the optimal Sharpe-ratio portfolio using the new algorithm approach.
- Propose a financial mathematical method that is combined with increased computing capacity to produce a powerful solution to the problem.
1.4. Organization of the Paper
2. Sharpe-Ratio Solver
3. Markov Approach for the Sharpe-Ratio Portfolio
3.1. Markov Model
3.2. Portfolio Model’s Compliance with MARKOV
3.3. Solver for Markov Chains
4. Numerical Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Markowitz, H. Portfolio selection. J. Financ. 1952, 7, 77–98. [Google Scholar]
- Merton, R. An analytic derivation of the efficient portfoliofrontier. J. Financ. Quant. Anal. 1972, 4, 1851–1872. [Google Scholar] [CrossRef]
- Sharpe, W.F. Mutual Fund Performance. J. Bus. 1966, 39, 119–138. [Google Scholar] [CrossRef]
- Sharpe, W.F. The Sharpe Ratio. J. Portf. Manag. 1994, 21, 49–58. [Google Scholar] [CrossRef]
- Caruso, G.; Gattone, S.; Fortuna, F.; Di Battista, T. Cluster Analysis for mixed data: An application to credit risk evaluation. Soc.-Econ. Plan. Sci. 2021, 73, 100850. [Google Scholar] [CrossRef]
- Zakamouline, V.; Koekebakker, S. Portfolio performance evaluation with generalized sharpe ratios:beyond the mean and variance. J. Bank. Financ. 2009, 33, 1242–1254. [Google Scholar] [CrossRef]
- Lu, J.R.; Li, X.Y. Identifying the fair value of sharpe ratio by an option valuation approach. Q. Rev. Econ. Financ. 2021, 82, 63–70. [Google Scholar] [CrossRef]
- Kourtis, A. The Sharpe ratio of estimated efficient portfolios. Financ. Res. Lett. 2016, 17, 72–78. [Google Scholar] [CrossRef]
- Samuelson, P. Lifetime portfolio selection by dynamic stochastic programming. Rev. Econ. Stat. 1969, 51, 239–246. [Google Scholar] [CrossRef]
- Constantinides, G. Multiperiod consumption and investment behavior with convex transaction costs. Manag. Sci. 1979, 25, 1127–1137. [Google Scholar] [CrossRef]
- Sánchez, E.M.; Clempner, J.B.; Poznyak, A.S. Solving The Mean-Variance Customer Portfolio in Markov Chains Using Iterated Quadratic/Lagrange Programming: A Credit-Card Customer-Credit Limits Approach. Expert Syst. Appl. 2015, 42, 5315–5327. [Google Scholar] [CrossRef]
- Sánchez, E.M.; Clempner, J.B.; Poznyak, A.S. A priori-knowledge/actor-critic reinforcement learning architecture for computing the mean–variance customer portfolio: The case of bank marketing campaigns. Eng. Appl. Artif. Intell. 2015, 46 Pt A, 82–92. [Google Scholar] [CrossRef]
- Clempner, J.B.; Poznyak, A.S. Sparse mean–variance customer Markowitz portfolio optimization for Markov chains: A Tikhonov’s regularization penalty approach. Optim. Eng. 2018, 19, 383–417. [Google Scholar] [CrossRef]
- Asiain, E.; Clempner, J.B.; Poznyak, A.S. A Reinforcement Learning Approach for Solving the Mean Variance Customer Portfolio in Partially Observable Models. Int. J. Artif. Intell. Tools 2018, 27, 1850034. [Google Scholar] [CrossRef]
- Garcia-Galicia, M.; Carsteanu, A.A.; Clempner, J. Continuous-Time Mean Variance Portfolio with Transaction Costs: A Proximal Approach Involving Time Penalization. Int. J. Gen. Syst. 2019, 48, 91–111. [Google Scholar] [CrossRef]
- Domínguez, F.; Clempner, J.B. Multiperiod Mean-Variance Customer Constrained Portfolio Optimization For Finite Discrete-Time Markov Chains. Econ Comput Econ Cyb. 2019, 1, 39–56. [Google Scholar]
- Garcia-Galicia, M.; Carsteanu, A.A.; Clempner, J. Continuous-Time Learning Method For Customer Portfolio with Time Penalization. Expert Syst. Appl. 2019, 129, 27–36. [Google Scholar] [CrossRef]
- Meghwani, S.; Thakur, M. Multi-objective heuristic algorithms for practical portfolio optimization and rebalancing with transaction cost. Appl. Soft Comput. 2018, 67, 865–894. [Google Scholar] [CrossRef]
- Vazquez, E.; Clempner, J.B. Customer Portfolio Model Driven By Continuous-Time Markov Chains: An L2 Lagrangian Regularization Method. Econ. Comput. Econ. Cybern. Stud. Res. 2020, 2, 23–40. [Google Scholar]
- Akian, M.; Sulem, A.; Taksar, M. Dynamic optimization of long-term growth rate for a portfolio with transaction costs and logarithmic utility. Math. Financ. 2001, 11, 152–188. [Google Scholar] [CrossRef]
- Cvitanic, J.; Karatzas, I. Hedging and portfolio optimization under transaction costs: A martingale approach. Math. Financ. 1996, 6, 133–166. [Google Scholar] [CrossRef]
- Davis, M.; Norman, A. Portfolio selection with transaction costs. Math. Oper. Res. 1990, 15, 676–713. [Google Scholar] [CrossRef]
- Liu, H. Optimal consumption and investment with transaction costs and multiple risky assets. J. Financ. 2005, 59, 289–338. [Google Scholar] [CrossRef]
- Ziemba, W.; Vickson, R. Stochastic Optimization Models in Finance; World Scientific: Singapore, 2006. [Google Scholar]
- Nowak, P.; Romaniuk, M. Valuing catastrophe bonds involving correlation and CIR interest rate model. Comp. Appl. Math. 2018, 37, 365–394. [Google Scholar] [CrossRef]
- Mwanakatwe, P.; Song, L.; Hagenimana, E.; Wang, X. Management strategies for a defined contribution pension fund under the hybrid stochastic volatility model. Comp. Appl. Math. 2019, 38, 1–19. [Google Scholar] [CrossRef]
- Tikhonov, A.N.; Arsenin, V.Y. Solution of Ill-Posed Problems; Winston & Sons: Washington, DC, USA, 1977. [Google Scholar]
- Tikhonov, A.; Goncharsky, A.; Stepanov, V.; Yagola, A.G. Numerical Methods for the Solution of Ill-Posed Problems; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 1995. [Google Scholar]
- Carrasco, M.; Noumon, N. Optimal Portfolio Selection Using Regularization; Citeseer: Gaithersburg, MD, USA, 2010. [Google Scholar]
- Fastrich, B.; Paterlini, S.; Winker, P. Constructing optimal sparse portfolios using regularization methods. Comput. Manag. Sci. 2015, 12, 417–434. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz-Cerezo, L.L.; Carsteanu, A.A.; Clempner, J.B. Sharpe-Ratio Portfolio in Controllable Markov Chains: Analytic and Algorithmic Approach for Second Order Cone Programming. Mathematics 2022, 10, 3221. https://doi.org/10.3390/math10183221
Ortiz-Cerezo LL, Carsteanu AA, Clempner JB. Sharpe-Ratio Portfolio in Controllable Markov Chains: Analytic and Algorithmic Approach for Second Order Cone Programming. Mathematics. 2022; 10(18):3221. https://doi.org/10.3390/math10183221
Chicago/Turabian StyleOrtiz-Cerezo, Lesly Lisset, Alin Andrei Carsteanu, and Julio Bernardo Clempner. 2022. "Sharpe-Ratio Portfolio in Controllable Markov Chains: Analytic and Algorithmic Approach for Second Order Cone Programming" Mathematics 10, no. 18: 3221. https://doi.org/10.3390/math10183221
APA StyleOrtiz-Cerezo, L. L., Carsteanu, A. A., & Clempner, J. B. (2022). Sharpe-Ratio Portfolio in Controllable Markov Chains: Analytic and Algorithmic Approach for Second Order Cone Programming. Mathematics, 10(18), 3221. https://doi.org/10.3390/math10183221