Bagged Ensemble of Gaussian Process Classifiers for Assessing Rockburst Damage Potential with an Imbalanced Dataset
Abstract
:1. Introduction
2. Data Acquisition
3. Methodology
3.1. Gaussian Process Classifier
3.2. Bagged Ensemble of Gaussian Process Classifiers
3.3. Establishment of Rockburst Damage Evaluation Model
4. Validity Verification
5. Case Study
6. Discussions
- (1)
- The bagged ensemble of GPCs has better evaluation performance for level , but the evaluation performance for level still needs to be improved. The reason may be that the sample size of is the largest, while that of is the least. A large number of samples can make the model fit better, which can improve the evaluation performance in turn. Because the data-driven method is highly dependent on the quality of data, a higher-quality rockburst damage database should be established in the future.
- (2)
- More indicators for rockburst damage evaluation need to be considered. According to the original rockburst damage database, some samples with the same indicator values have different levels. This shows that some key indicators are ignored, which may be an important reason for restricting the evaluation accuracy of rockburst damage. In the future, some novel evaluation indicators may be proposed from the perspective of focal mechanisms and failure characteristics of rock mass under dynamic and static stress.
- (3)
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Number | I1 | I2 | I3/(m) | I4 | I5 | I6/(m) | I8/(kg/m3) | Level |
---|---|---|---|---|---|---|---|---|
1 | 80 | 5 | 6.2 | 1 | −0.3 | 5 | 2700 | 4 |
2 | 60 | 5 | 4.2 | 0.5 | 1.7 | 20 | 2700 | 4 |
3 | 60 | 8 | 4.2 | 0.5 | 1.7 | 25 | 2700 | 2 |
4 | 80 | 8 | 6 | 0.5 | 1.8 | 10 | 2700 | 4 |
5 | 70 | 8 | 4 | 1 | 1.8 | 15 | 2700 | 2 |
6 | 40 | 5 | 3.8 | 1 | 0.4 | 5 | 2700 | 2 |
7 | 80 | 8 | 5.9 | 1 | 0.6 | 5 | 2700 | 2 |
8 | 90 | 8 | 6.8 | 1 | 0 | 5 | 2700 | 4 |
9 | 80 | 8 | 7 | 1 | 0 | 10 | 2700 | 2 |
10 | 80 | 8 | 7 | 1 | 2 | 5 | 2700 | 4 |
11 | 80 | 8 | 4.1 | 1 | 2 | 10 | 2700 | 4 |
12 | 70 | 8 | 9.5 | 1 | 2.2 | 5 | 2700 | 4 |
13 | 75 | 8 | 3.8 | 1 | 2.2 | 10 | 2700 | 3 |
14 | 75 | 8 | 4 | 1 | 2.2 | 10 | 2700 | 4 |
15 | 60 | 8 | 6.2 | 1 | 1.6 | 5 | 2700 | 2 |
16 | 60 | 10 | 10.5 | 0.5 | 1.6 | 5 | 2700 | 2 |
17 | 65 | 8 | 4.3 | 1 | 0.3 | 5 | 2700 | 2 |
18 | 60 | 5 | 5.6 | 0.5 | 1.5 | 5 | 2700 | 4 |
19 | 45 | 10 | 9.1 | 0.5 | 1.8 | 5 | 2700 | 5 |
20 | 43 | 5 | 9.3 | 0.5 | 1.8 | 5 | 2700 | 4 |
21 | 43 | 10 | 9.3 | 1 | 1.8 | 5 | 2700 | 2 |
22 | 43 | 10 | 9.4 | 0.5 | −0.2 | 5 | 2700 | 2 |
23 | 54 | 8 | 3.5 | 0.5 | 1.3 | 5 | 2700 | 2 |
24 | 45 | 8 | 3.6 | 1 | 1.3 | 10 | 2700 | 2 |
25 | 80 | 8 | 5.4 | 1 | 1.3 | 10 | 2700 | 2 |
26 | 50 | 8 | 7.8 | 1 | 1.3 | 15 | 2700 | 2 |
27 | 50 | 5 | 6.2 | 1 | 1 | 5 | 2700 | 3 |
28 | 50 | 5 | 5.1 | 0.5 | 1.2 | 5 | 2700 | 4 |
29 | 50 | 5 | 5.1 | 1 | 1.2 | 5 | 2700 | 2 |
30 | 50 | 8 | 8.3 | 1 | 0.7 | 5 | 2700 | 2 |
31 | 50 | 8 | 5.5 | 1 | 0.7 | 5 | 2700 | 2 |
32 | 60 | 10 | 8.8 | 1 | 2 | 5 | 2700 | 2 |
33 | 60 | 5 | 6.2 | 1 | 2 | 5 | 2700 | 2 |
34 | 60 | 5 | 5.2 | 1 | 2 | 5 | 2700 | 2 |
35 | 60 | 5 | 8.4 | 1 | 2 | 5 | 2700 | 2 |
36 | 60 | 5 | 6 | 1 | 2 | 5 | 2700 | 2 |
37 | 60 | 10 | 8.4 | 1 | 2 | 5 | 2700 | 2 |
38 | 60 | 5 | 5.3 | 1 | 2 | 5 | 2700 | 2 |
39 | 60 | 10 | 7 | 1 | 2 | 5 | 2700 | 2 |
40 | 60 | 10 | 5.4 | 0.5 | 2 | 5 | 2700 | 4 |
41 | 75 | 5 | 5.1 | 1 | 0.6 | 15 | 2700 | 3 |
42 | 70 | 5 | 5.1 | 1 | 0.6 | 10 | 2700 | 2 |
43 | 70 | 5 | 5.1 | 1 | 0.6 | 5 | 2700 | 3 |
44 | 75 | 5 | 5.2 | 1 | 1.3 | 10 | 2700 | 2 |
45 | 75 | 5 | 6.7 | 1 | 1.3 | 15 | 2700 | 2 |
46 | 75 | 5 | 5.1 | 1 | 1.3 | 20 | 2700 | 2 |
47 | 75 | 8 | 7 | 1 | 1.8 | 5 | 2700 | 3 |
48 | 75 | 8 | 5 | 1 | 1.8 | 10 | 2700 | 2 |
49 | 75 | 5 | 5.3 | 1 | 1.8 | 5 | 2700 | 3 |
50 | 35 | 2 | 5.3 | 1 | 3.1 | 15 | 2700 | 5 |
51 | 35 | 2 | 10.6 | 1 | 3.1 | 15 | 2700 | 5 |
52 | 35 | 10 | 10.6 | 1 | 3.1 | 20 | 2700 | 2 |
53 | 35 | 5 | 5.9 | 1.5 | 3.1 | 25 | 2700 | 4 |
54 | 35 | 2 | 10.6 | 1.5 | 3.1 | 25 | 2700 | 4 |
55 | 35 | 5 | 11.8 | 1.5 | 3.1 | 20 | 2700 | 2 |
56 | 35 | 5 | 10.6 | 0.5 | 3.1 | 25 | 2700 | 3 |
57 | 35 | 8 | 7.6 | 0.5 | 3.1 | 15 | 2700 | 4 |
58 | 41.7 | 5 | 7.6 | 1.5 | 3.1 | 15 | 2700 | 2 |
59 | 41.7 | 2 | 7 | 1 | 3.1 | 10 | 2700 | 4 |
60 | 35 | 10 | 10.6 | 0.5 | 3.1 | 15 | 2700 | 2 |
61 | 35 | 5 | 7 | 1 | 3.1 | 15 | 2700 | 4 |
62 | 40 | 2 | 14 | 1 | 2.8 | 15 | 2900 | 5 |
63 | 39 | 2 | 7 | 1 | 2.8 | 10 | 2900 | 4 |
64 | 39 | 2 | 6.5 | 1 | 2.8 | 50 | 2900 | 4 |
65 | 40 | 2 | 5.7 | 1 | 1.6 | 25 | 2900 | 3 |
66 | 42.86 | 2 | 6.4 | 1.5 | 1.6 | 20 | 2900 | 3 |
67 | 35.1 | 2 | 6.8 | 1.5 | 3.5 | 50 | 2900 | 2 |
68 | 38 | 10 | 9 | 0.5 | 3.5 | 10 | 2900 | 5 |
69 | 32.3 | 2 | 4.5 | 1.5 | 3.5 | 35 | 2900 | 3 |
70 | 43.7 | 8 | 7.7 | 0.5 | 3.5 | 20 | 2900 | 3 |
71 | 43.7 | 10 | 7 | 0.5 | 3.5 | 20 | 2900 | 3 |
72 | 43.7 | 2 | 4.2 | 1 | 3.5 | 15 | 2900 | 4 |
73 | 42.8 | 2 | 5 | 0.5 | 3.5 | 30 | 2900 | 5 |
74 | 42.8 | 10 | 10 | 0.5 | 3.5 | 30 | 2900 | 3 |
75 | 39.5 | 5 | 5 | 0.5 | 3.5 | 10 | 2900 | 4 |
76 | 44.4 | 10 | 15 | 1 | 3.5 | 15 | 2900 | 4 |
77 | 47.3 | 8 | 8.3 | 1 | 3.5 | 50 | 2900 | 3 |
78 | 47.3 | 8 | 5.5 | 1 | 3.5 | 50 | 2900 | 3 |
79 | 51.43 | 5 | 9.3 | 1.5 | 1.9 | 10 | 2900 | 3 |
80 | 39.4 | 5 | 9.5 | 1.5 | 2.1 | 15 | 2900 | 2 |
81 | 39.4 | 2 | 4.5 | 1 | 2.1 | 20 | 2900 | 3 |
82 | 39.4 | 10 | 11 | 1 | 2.1 | 25 | 2900 | 2 |
83 | 41.7 | 2 | 4.5 | 0.5 | 2.1 | 60 | 2900 | 3 |
84 | 40.8 | 10 | 10 | 0.5 | 2.1 | 30 | 2900 | 3 |
85 | 40.8 | 5 | 8 | 0.5 | 2.1 | 25 | 2900 | 3 |
86 | 44.1 | 5 | 18 | 1 | 2.1 | 50 | 2900 | 2 |
87 | 36 | 8 | 14 | 1 | 1.2 | 10 | 2900 | 2 |
88 | 36 | 8 | 6.5 | 0.5 | 1.2 | 15 | 2900 | 2 |
89 | 37.7 | 8 | 5.2 | 1 | 0.4 | 5 | 2900 | 3 |
90 | 40.8 | 8 | 4.2 | 1 | 1.8 | 5 | 2900 | 2 |
91 | 30 | 10 | 5.3 | 0.5 | 1.2 | 5 | 2800 | 3 |
92 | 30 | 8 | 5.4 | 0.5 | 1.2 | 5 | 2800 | 2 |
93 | 30 | 10 | 5.3 | 1 | 1.2 | 10 | 2800 | 2 |
94 | 30 | 10 | 5.2 | 1 | 1.2 | 10 | 2800 | 3 |
95 | 74 | 8 | 5.9 | 0.5 | 1.5 | 5 | 2800 | 5 |
96 | 74 | 8 | 5.3 | 1 | 1.5 | 10 | 2800 | 3 |
97 | 74 | 8 | 5.9 | 1 | 1.5 | 10 | 2800 | 2 |
98 | 74 | 8 | 6.5 | 1 | 1.5 | 20 | 2800 | 2 |
99 | 74 | 8 | 6.5 | 0.5 | 1.5 | 15 | 2800 | 4 |
100 | 71 | 8 | 8 | 1 | 0.9 | 5 | 2800 | 4 |
101 | 71 | 8 | 5.3 | 1 | 0.9 | 10 | 2800 | 2 |
102 | 71 | 10 | 8 | 1 | 0.9 | 10 | 2800 | 2 |
103 | 71 | 8 | 5.6 | 1 | 0.9 | 10 | 2800 | 2 |
104 | 71 | 10 | 20 | 0.5 | 2.1 | 5 | 2800 | 5 |
105 | 40 | 8 | 5.9 | 0.5 | 2.1 | 5 | 2700 | 4 |
106 | 40 | 8 | 5.3 | 0.5 | 2.1 | 5 | 2700 | 2 |
107 | 40 | 8 | 5.9 | 1 | 2.1 | 5 | 2700 | 2 |
108 | 40 | 8 | 6.5 | 1 | 2.1 | 10 | 2700 | 2 |
109 | 40 | 2 | 5.6 | 1 | 2.1 | 10 | 2700 | 4 |
110 | 40 | 2 | 5.8 | 1 | 2.1 | 5 | 2700 | 4 |
111 | 40 | 8 | 5.5 | 1 | 2.1 | 20 | 2700 | 2 |
112 | 70 | 5 | 8 | 1 | 0.8 | 5 | 2800 | 4 |
113 | 70 | 10 | 8 | 1 | 0.8 | 10 | 2800 | 2 |
114 | 70 | 10 | 5.5 | 1 | 0.8 | 10 | 2800 | 2 |
115 | 70 | 5 | 8 | 1 | 0.8 | 10 | 2800 | 4 |
116 | 70 | 8 | 5.1 | 1 | 0.8 | 10 | 2800 | 3 |
117 | 70 | 5 | 5.1 | 1 | 0.8 | 5 | 2800 | 2 |
118 | 70 | 5 | 5.1 | 1 | 0.8 | 10 | 2800 | 2 |
119 | 54 | 5 | 5.7 | 1 | 0.8 | 20 | 2700 | 2 |
120 | 54 | 10 | 9.1 | 0.5 | 0.8 | 25 | 2700 | 2 |
121 | 39 | 8 | 5.7 | 1 | 0.8 | 30 | 2800 | 2 |
122 | 84 | 5 | 7.7 | 1 | 2.9 | 10 | 2900 | 5 |
123 | 45 | 5 | 4.8 | 1 | 2.9 | 50 | 2900 | 2 |
124 | 84 | 10 | 7.4 | 1 | 2.9 | 50 | 2900 | 3 |
125 | 45 | 10 | 6.9 | 1 | 2.9 | 10 | 2900 | 2 |
126 | 45 | 5 | 7.4 | 1 | 2.9 | 10 | 2900 | 4 |
127 | 56 | 5 | 4.6 | 1 | 2.9 | 25 | 2900 | 2 |
128 | 18 | 5 | 5.8 | 0.5 | 0.4 | 10 | 3030 | 4 |
129 | 24 | 5 | 8.6 | 0.5 | 0.4 | 10 | 3030 | 3 |
130 | 95 | 10 | 6.9 | 1 | 1.5 | 5 | 2900 | 2 |
131 | 95 | 5 | 6.6 | 1 | 0.9 | 5 | 2900 | 5 |
132 | 45 | 10 | 5.1 | 1 | 1.6 | 5 | 2900 | 2 |
133 | 21 | 5 | 11.2 | 1.5 | 0.9 | 5 | 3030 | 2 |
134 | 21 | 5 | 6.1 | 1.5 | 0.9 | 5 | 3030 | 2 |
135 | 95 | 10 | 8 | 1 | 1.6 | 5 | 2900 | 5 |
136 | 39 | 10 | 5.3 | 1 | 1.6 | 15 | 2900 | 3 |
137 | 21 | 5 | 5.5 | 1 | 1.9 | 20 | 3030 | 3 |
138 | 24 | 5 | 8.7 | 0.5 | 1.5 | 10 | 3030 | 5 |
139 | 24 | 5 | 11 | 1 | 1.5 | 15 | 3030 | 2 |
140 | 67 | 10 | 5 | 1 | −0.2 | 5 | 2900 | 2 |
141 | 21 | 5 | 9 | 0.5 | 1.8 | 10 | 3030 | 4 |
142 | 21 | 10 | 9 | 1 | 1.8 | 10 | 3030 | 2 |
143 | 95 | 10 | 6.8 | 1 | 1 | 5 | 2900 | 4 |
144 | 73 | 25 | 6.8 | 1 | 1 | 5 | 2900 | 3 |
145 | 27 | 5 | 11.5 | 1 | 3.1 | 30 | 3030 | 4 |
146 | 27 | 5 | 7.6 | 1 | 3.1 | 40 | 3030 | 4 |
147 | 35 | 5 | 11.5 | 1 | 3.1 | 30 | 3030 | 4 |
148 | 50 | 25 | 4.5 | 1 | 3.1 | 40 | 2900 | 2 |
149 | 95 | 25 | 7.1 | 1 | 3.1 | 20 | 2900 | 2 |
150 | 73 | 25 | 4.7 | 1 | 3.1 | 30 | 2900 | 2 |
151 | 95 | 25 | 6.3 | 1 | 3.1 | 30 | 2900 | 2 |
152 | 73 | 25 | 4.4 | 1 | 3.1 | 40 | 2900 | 2 |
153 | 73 | 25 | 9.6 | 1 | 3.1 | 50 | 2900 | 2 |
154 | 54 | 25 | 4.8 | 1 | 3.1 | 60 | 2900 | 2 |
155 | 34 | 5 | 4.5 | 1 | 3.1 | 70 | 2900 | 3 |
156 | 25 | 10 | 11.6 | 0.5 | 1.4 | 5 | 3030 | 4 |
157 | 25 | 5 | 11.6 | 0.5 | 1.4 | 5 | 3030 | 4 |
158 | 24 | 5 | 12 | 1 | 2 | 5 | 3030 | 5 |
159 | 39 | 5 | 9 | 1 | 2 | 5 | 2900 | 4 |
160 | 25 | 5 | 5.1 | 1 | 1.3 | 5 | 3080 | 4 |
161 | 25 | 5 | 10.5 | 1 | 1.3 | 10 | 3080 | 3 |
162 | 25 | 5 | 7.8 | 1 | 1.3 | 10 | 3080 | 2 |
163 | 25.97 | 10 | 17 | 0.5 | 2 | 5 | 3080 | 5 |
164 | 25.97 | 8 | 6.2 | 0.5 | 2 | 10 | 3080 | 3 |
165 | 25.97 | 8 | 5.7 | 0.5 | 2 | 5 | 3080 | 4 |
166 | 25.97 | 5 | 5.4 | 1 | 2 | 10 | 3080 | 3 |
167 | 25.97 | 8 | 5.3 | 1 | 2 | 10 | 3080 | 2 |
168 | 25.97 | 8 | 5.6 | 0.5 | 2 | 5 | 3080 | 4 |
169 | 75 | 5 | 5.2 | 1 | 1.6 | 10 | 2800 | 5 |
170 | 75 | 5 | 5 | 1 | 1.6 | 5 | 2800 | 5 |
171 | 65 | 5 | 2 | 1 | 1.6 | 5 | 2800 | 2 |
172 | 50 | 5 | 9.1 | 1 | 1.4 | 5 | 2800 | 3 |
173 | 50 | 5 | 4.6 | 0.5 | 1.9 | 30 | 2800 | 3 |
174 | 70 | 8 | 5 | 0.5 | 1.6 | 5 | 4300 | 4 |
175 | 70 | 8 | 8 | 1 | 2 | 5 | 4300 | 4 |
176 | 70 | 8 | 6 | 0.5 | 2 | 5 | 4300 | 4 |
177 | 70 | 8 | 12 | 1 | 2 | 10 | 4300 | 3 |
178 | 67 | 10 | 11 | 0.5 | 2.5 | 15 | 4300 | 5 |
179 | 67 | 25 | 5 | 1 | 2.5 | 15 | 4300 | 2 |
180 | 67 | 5 | 5 | 1 | 2.5 | 15 | 4300 | 2 |
181 | 76 | 10 | 6 | 0.5 | 2.7 | 5 | 4300 | 5 |
182 | 40 | 10 | 9.2 | 0.5 | 1.1 | 5 | 4300 | 3 |
183 | 40 | 5 | 4.8 | 1 | 1.1 | 10 | 4300 | 2 |
184 | 40 | 10 | 11.7 | 0.5 | 2.5 | 5 | 4300 | 5 |
185 | 50 | 10 | 9 | 1 | 2.7 | 20 | 4300 | 4 |
186 | 50 | 5 | 6 | 1 | 2.1 | 5 | 4300 | 4 |
187 | 55 | 5 | 8 | 1 | 1.9 | 5 | 4300 | 5 |
188 | 55 | 5 | 6 | 1 | 2.3 | 5 | 4300 | 4 |
189 | 65 | 10 | 11 | 1 | 2.3 | 10 | 4300 | 4 |
190 | 55 | 5 | 6 | 0.5 | 0.9 | 5 | 4300 | 4 |
191 | 60 | 5 | 5.5 | 1 | 2.2 | 20 | 4300 | 4 |
192 | 50 | 5 | 5.5 | 0.5 | 1.4 | 5 | 4300 | 5 |
193 | 50 | 10 | 8.5 | 0.5 | 1.4 | 20 | 4300 | 2 |
194 | 50 | 10 | 5.5 | 0.5 | 1.4 | 40 | 4300 | 2 |
195 | 50 | 5 | 6 | 1 | 1.5 | 5 | 4300 | 3 |
196 | 50 | 10 | 30 | 1 | 1.7 | 5 | 4300 | 5 |
197 | 70 | 5 | 4.4 | 1.5 | 1.7 | 20 | 2700 | 2 |
198 | 70 | 10 | 4.6 | 0.5 | 2 | 5 | 2800 | 4 |
199 | 90 | 10 | 4.5 | 1.5 | 2 | 10 | 2850 | 2 |
200 | 70 | 5 | 5.2 | 1 | 2.1 | 5 | 2700 | 5 |
201 | 56.2 | 8 | 10 | 1 | 1 | 5 | 2870 | 4 |
202 | 56.2 | 10 | 10 | 1 | 1 | 10 | 2870 | 2 |
203 | 56.2 | 8 | 6 | 1 | 1 | 20 | 2870 | 2 |
204 | 57.8 | 8 | 6.1 | 1 | 1 | 5 | 2870 | 3 |
205 | 57.8 | 8 | 6.1 | 1.5 | 1 | 10 | 2870 | 3 |
206 | 57.8 | 8 | 6.5 | 1 | 1.5 | 5 | 2870 | 4 |
207 | 57.8 | 10 | 11.3 | 1 | 1.5 | 10 | 2870 | 2 |
208 | 57.8 | 10 | 6.5 | 1 | 1.5 | 10 | 2870 | 2 |
209 | 57 | 8 | 6.7 | 1 | 2.2 | 5 | 2870 | 4 |
210 | 57 | 10 | 9.5 | 1 | 2.2 | 5 | 2870 | 4 |
211 | 57 | 10 | 11.2 | 1 | 2.2 | 10 | 2870 | 2 |
212 | 57 | 8 | 6.4 | 1 | 2.2 | 25 | 2870 | 2 |
213 | 57 | 8 | 6.5 | 1 | 2.2 | 10 | 2870 | 2 |
214 | 57 | 10 | 11.5 | 0.5 | 1.7 | 5 | 2870 | 4 |
215 | 57 | 10 | 11 | 1 | 1.7 | 5 | 2870 | 2 |
216 | 57 | 10 | 11 | 1 | 1.7 | 10 | 2870 | 2 |
217 | 57 | 10 | 11.5 | 1 | 1.7 | 10 | 2870 | 2 |
218 | 57 | 10 | 7.4 | 1 | 1.7 | 15 | 2870 | 2 |
219 | 57.8 | 10 | 6.4 | 0.5 | 2.5 | 5 | 2870 | 5 |
220 | 57.8 | 10 | 11.2 | 0.5 | 2.5 | 5 | 2870 | 5 |
221 | 57.8 | 10 | 6.4 | 1 | 2.5 | 10 | 2870 | 2 |
222 | 57.8 | 10 | 10.6 | 1 | 2.5 | 10 | 2870 | 2 |
223 | 58.6 | 10 | 12.4 | 0.5 | 2.2 | 30 | 2870 | 2 |
224 | 58.6 | 10 | 5.9 | 1 | 2.2 | 30 | 2870 | 2 |
225 | 58.6 | 10 | 6.1 | 1 | 2.2 | 30 | 2870 | 2 |
226 | 59.3 | 8 | 8 | 1 | 2.2 | 5 | 2870 | 5 |
227 | 59.3 | 8 | 5.4 | 1 | 2.2 | 15 | 2870 | 3 |
228 | 59.3 | 8 | 10 | 1 | 2.2 | 10 | 2870 | 2 |
229 | 59.3 | 8 | 8 | 1 | 2.2 | 15 | 2870 | 3 |
230 | 59.3 | 8 | 8.4 | 1 | 2.2 | 15 | 2870 | 2 |
231 | 59.3 | 8 | 5 | 1 | 2.2 | 20 | 2870 | 2 |
232 | 70.3 | 10 | 6.9 | 0.5 | 2.3 | 5 | 2900 | 5 |
233 | 70.3 | 10 | 11 | 1 | 2.3 | 10 | 2900 | 2 |
234 | 70.3 | 10 | 5.5 | 1 | 2.3 | 15 | 2900 | 3 |
235 | 70.3 | 10 | 5.4 | 1 | 2.3 | 15 | 2900 | 2 |
236 | 72.2 | 8 | 4 | 1 | 1.6 | 5 | 2900 | 3 |
References
- Keneti, A.; Sainsbury, B.A. Review of published rockburst events and their contributing factors. Eng. Geol. 2018, 246, 361–373. [Google Scholar] [CrossRef]
- Gong, F.Q.; Yan, J.Y.; Li, X.B. A new criterion of rock burst proneness based on the linear energy storage law and the residual elastic energy index. Chin. J. Rock Mech. Eng. 2018, 37, 1993–2014. [Google Scholar]
- Hudyma, M.; Potvin, Y.H. An engineering approach to seismic risk management in hardrock mines. Rock Mech. Rock Eng. 2010, 43, 891–906. [Google Scholar] [CrossRef]
- Sepehri, M.; Apel, D.B.; Adeeb, S.; Leveille, P.; Hall, R.A. Evaluation of mining-induced energy and rockburst prediction at a diamond mine in Canada using a full 3D elastoplastic finite element model. Eng. Geol. 2020, 266, 105457. [Google Scholar] [CrossRef]
- Gong, F.Q.; Yan, J.Y.; Li, X.B.; Luo, S. A peak-strength strain energy storage index for rock burst proneness of rock materials. Int. J. Rock Mech. Min. Sci. 2019, 117, 76–89. [Google Scholar] [CrossRef]
- Ortlepp, W.D.; Stacey, T.R. Rockburst mechanisms in tunnels and shafts. Tunn. Undergr. Sp. Technol. 1994, 9, 59–65. [Google Scholar] [CrossRef]
- Hedley, D.G.F. A Five-Year Review of the Canada–Ontario Industry Rockburst Project; Special Report SP90, Division Report SP90-064; Canada Centre for Mineral and Energy Technology, Mining Research Laboratory: Ottawa, ON, Canada, 1990. [Google Scholar]
- Lu, C.P.; Liu, G.J.; Liu, Y.; Zhang, N.; Xue, J.H.; Zhang, L. Microseismic multi-parameter characteristics of rockburst hazard induced by hard roof fall and high stress concentration. Int. J. Rock Mech. Min. 2015, 76, 18–32. [Google Scholar] [CrossRef]
- Durrheim, R.J. Mitigating the Risk of Rockbursts in the Deep Hard Rock Mines of South Africa: 100 Years of Research. Extracting the Science: A Century of Mining Research; Brune, J., Ed.; Society for Mining, Metallurgy, and Exploration, Littleton: New York, NY, USA, 2010; pp. 156–171. [Google Scholar]
- Kaiser, P.K.; McCreath, D.R.; Tannant, D.D. Canadian Rockburst Research Program 1990–1995; Mining Division of the Canadian Mining Industry Research Organization: Sudbury, ON, Canada, 1997. [Google Scholar]
- Kaiser, P.K.; Tannant, D.D.; McCreath, D.R.; Jesenak, P. Rockburst Damage Assessment Procedure, Rock Support in Mining and Underground Construction; Balkema, K.M., Ed.; CRC Press: Rotterdam, The Netherlands, 1992; pp. 639–647. [Google Scholar]
- Durrheim, R.J.; Roberts, M.K.C.; Haile, A.T.; Hagan, T.O.; Jager, J.A.; Handley, M.F.; Spottiswoode, S.M.; Ortlepp, W.D. Factors influencing the severity of rockburst damage in South African gold mines. In SARES 97—1st Southern African Rock Engineering Symposium; Gurtunca, R.G., Hagan, T.O., Eds.; SARES: Johannesburg, South Africa, 1997; pp. 17–24. [Google Scholar]
- Brink, A.; Hagan, T.O.; Spottiswoode, S.M.; Malan, D.F.; Glazer, S.N.; Lasocki, S. Survey and Assessment of Techniques Used to Quantify the Potential for Rock Mass Instability; Safety in Mines Research Advisory Committee: Pretoria, South Africa, 2000. [Google Scholar]
- Albrecht, J.; Sharrock, G. A Model to Forecast Rockburst Damage. Challenges in Deep and High Stress Mining; Australian Centre for Geomechanics: Perth, Australia, 2006; pp. 1–15. [Google Scholar]
- Heal, D.; Hudyma, M.; Potvin, Y. Evaluating rockburst damage potential in underground mining. In Proceedings of the 41st US Symposium on Rock Mechanics (USRMS), Golden, CO, USA, 17–21 June 2006; pp. 1020–1025. [Google Scholar]
- Zhou, J.; Shi, X.Z.; Huang, R.D.; Qiu, X.Y.; Chen, C. Feasibility of stochastic gradient boosting approach for predicting rockburst damage in burst-prone mines. Trans. Nonferr. Met. Soc. 2016, 26, 1938–1945. [Google Scholar] [CrossRef]
- Li, N.; Zare Naghadehi, M.; Jimenez, R. Evaluating short-term rock burst damage in underground mines using a systems approach. Int. J. Min. Reclam. Environ. 2020, 34, 531–561. [Google Scholar] [CrossRef]
- Pu, Y.Y.; Apel, D.B.; Liu, V.; Mitri, H. Machine learning methods for rockburst prediction-state-of-the-art review. Int. J. Min. Sci. Technol. 2019, 29, 565–570. [Google Scholar] [CrossRef]
- Liang, W.Z.; Sari, Y.A.; Zhao, G.Y.; McKinnon, S.D.; Wu, H. Probability estimates of short-term rockburst risk with ensemble classifiers. Rock Mech. Rock Eng. 2021, 54, 1799–1814. [Google Scholar] [CrossRef]
- Yin, X.; Liu, Q.S.; Pan, Y.C.; Huang, X.; Wu, J.; Wang, X.Y. Strength of stacking technique of ensemble learning in rockburst prediction with imbalanced data: Comparison of eight single and ensemble models. Nat. Resour. Res. 2021, 30, 1795–1815. [Google Scholar] [CrossRef]
- Jiang, K.; Lu, J.; Xia, K.L. A novel algorithm for imbalance data classification based on genetic algorithm improved SMOTE. Arab. J. Sci. Eng. 2016, 41, 3255–3266. [Google Scholar] [CrossRef]
- Xue, Y.G.; Li, G.K.; Li, Z.Q.; Wang, P.; Gong, H.M.; Kong, F.M. Intelligent prediction of rockburst based on Copula-MC oversampling architecture. Bull. Eng. Geol. Environ. 2022, 81, 209. [Google Scholar] [CrossRef]
- López, V.; Fernández, A.; Herrera, F. On the importance of the validation technique for classification with imbalanced datasets: Addressing covariate shift when data is skewed. Inf. Sci. 2014, 257, 1–13. [Google Scholar] [CrossRef]
- Chawla, N.V.; Japkowicz, N.; Kotcz, A. Special issue on learning from imbalanced data sets. SIGKDD Explor. 2004, 6, 1–6. [Google Scholar] [CrossRef]
- Zhang, Z.; Krawczyk, B.; Garcia, S.; Rosales-Pérez, A.; Herrera, F. Empowering one-vs-one decomposition with ensemble learning for multi-class imbalanced data. Knowl. -Based Syst. 2016, 106, 251–263. [Google Scholar] [CrossRef]
- Sun, B.; Chen, H.Y.; Wang, J.D.; Xie, H. Evolutionary under-sampling based bagging ensemble method for imbalanced data classification. Front. Comput. Sci. 2018, 12, 331–350. [Google Scholar] [CrossRef]
- Todorov, V.; Dimov, I. Innovative digital stochastic methods for multidimensional sensitivity analysis in air pollution modelling. Mathematics 2022, 10, 2146. [Google Scholar] [CrossRef]
- Sun, J.J.; Yeh, T.M.; Pai, F.Y. Application of Monte Carlo simulation to study the probability of confidence level under the PFMEA’s action priority. Mathematics 2022, 10, 2596. [Google Scholar] [CrossRef]
- Heilmeier, A.; Graf, M.; Betz, J.; Lienkamp, M. Application of Monte Carlo methods to consider probabilistic effects in a race simulation for circuit motorsport. Appl. Sci. 2020, 10, 4229. [Google Scholar] [CrossRef]
- Tama, B.A.; Lim, S. A comparative performance evaluation of classification algorithms for clinical decision support systems. Mathematics 2020, 8, 1814. [Google Scholar] [CrossRef]
- Rinta-Koski, O.P.; Särkkä, S.; Hollmén, J.; Leskinen, M.; Andersson, S. Gaussian process classification for prediction of in-hospital mortality among preterm infants. Neurocomputing 2018, 298, 134–141. [Google Scholar] [CrossRef]
- Liang, W.Z.; Sari, A.; Zhao, G.Y.; McKinnon, S.D.; Wu, H. Short-term rockburst risk prediction using ensemble learning methods. Nat. Hazards 2020, 104, 1923–1946. [Google Scholar] [CrossRef]
- Sagi, O.; Rokach, L. Ensemble learning: A survey. Wires Data Min. Knowl. 2018, 8, e1249. [Google Scholar] [CrossRef]
- Zhang, J.F.; Wang, Y.H.; Sun, Y.T.; Li, G.C. Strength of ensemble learning in multiclass classification of rockburst intensity. Int. J. Numer. Anal. Methods Geomech. 2020, 44, 1833–1853. [Google Scholar] [CrossRef]
- Heal, D. Observations and Analysis of Incidences of Rockburst Damage in Underground Mines. Ph.D. Thesis, University of Western Australia, Perth, Australia, 2010. [Google Scholar]
- Williams, C.K.; Rasmussen, C.E. Gaussian Processes for Machine Learning; MIT Press: Cambridge, UK, 2006. [Google Scholar]
- Santhanam, V.; Morariu, V.I.; Harwood, D.; Davis, L.S. A non-parametric approach to extending generic binary classifiers for multi-classification. Pattern Recogn. 2016, 58, 149–158. [Google Scholar] [CrossRef]
- Yeo, I.K.; Johnson, R.A. A new family of power transformations to improve normality or symmetry. Biometrika 2000, 87, 954–959. [Google Scholar] [CrossRef]
- Alodat, M.T.; Shakhatreh, M.K. Gaussian process regression with skewed errors. J. Comput. Appl. Math. 2020, 370, 112665. [Google Scholar] [CrossRef]
- Benavoli, A.; Azzimonti, D.; Piga, D. A unified framework for closed-form nonparametric regression, classification, preference and mixed problems with Skew Gaussian Processes. Mach. Learn. 2021, 110, 3095–3133. [Google Scholar] [CrossRef]
Microseismic Event | I1 | I2 | I3 | I4 | I5 | I6 | I8 | Actual Level | Results Using Heal’s Method [35] | Evaluation Results in This Study |
---|---|---|---|---|---|---|---|---|---|---|
#1 | 57.7 | 5 | 12.2 | 0.5 | 1.62 | 14 | 2700 | L2 | L5 | L2 |
57.7 | 5 | 12.2 | 0.5 | 1.62 | 22 | 2700 | L2 | L5 | L2 | |
47 | 8 | 6 | 0.5 | 1.62 | 29 | 2700 | L2 | L2 | L2 | |
#2 | 47 | 8 | 10.3 | 0.5 | 1.8 | 10 | 2700 | L3 | L4 | L2 |
47 | 8 | 6.6 | 0.5 | 1.8 | 10 | 2700 | L2 | L2 | L4 | |
46.9 | 5 | 5.9 | 0.5 | 1.8 | 16 | 2700 | L3 | L3 | L4 | |
#3 | 47.5 | 10 | 4.8 | 0.5 | 1.5 | 10 | 2700 | L2 | L2 | L2 |
47.5 | 10 | 10 | 1 | 1.5 | 10 | 2700 | L2 | L2 | L2 | |
#4 | 39.2 | 5 | 5 | 1 | 1.8 | 13 | 2700 | L2 | L1 | L2 |
43.4 | 8 | 5 | 1 | 1.8 | 13 | 2700 | L2 | L1 | L2 | |
#5 | 58 | 8 | 12 | 0.5 | 1.6 | 10 | 2700 | L2 | L5 | L2 |
#6 | 58.1 | 8 | 11 | 1 | 2.2 | 5 | 2700 | L4 | L3 | L2 |
Evaluation Criterion | Level | Method | Accuracy |
---|---|---|---|
The evaluation value corresponds to the actual value | , , , , | EVP [35] | 28.0% |
, , , , | EVP.PPV [35] | 24.4% | |
, , , | Stochastic gradient boosting approach [16] | 61.22% | |
, , , | The proposed method | 63.27% | |
The evaluation value corresponds to the actual value or the neighboring value | , , , , | EVP [35] | 66.1% |
, , , , | EVP.PPV [35] | 72.4% | |
, , , | The proposed method | 91.84% | |
The evaluation value corresponds to the actual value after combining , and (or and into one group while and into another group | , , , , | EVP [35] | 71.3% |
, , , , | EVP.PPV [35] | 78.0% | |
, , , | The proposed method | 89.80% | |
The evaluation value corresponds to the actual value after combining and into one group | , , , | Rock engineering systems and artificial neural network [17] | 71% |
, , , | The proposed method | 75.51% |
Approaches | Confusion Matrix | Accuracy | F1 |
---|---|---|---|
Bagged ensemble of GPCs without data preprocessing | 48.98% | [0.6667, 0.4211, 0.3478, 0.1818] | |
Bagged ensemble of GPCs without under-sampling | 61.22% | [0.7407, 0.5333, 0.6, 0] | |
GPC without under-sampling | 57.14% | [0.7170, 0.4, 0.5714, 0] | |
The proposed method | 63.27% | [0.7907, 0.6, 0.5455, 0.3077] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Da, Q.; Liang, W.; Xiao, P.; Dai, B.; Zhao, G. Bagged Ensemble of Gaussian Process Classifiers for Assessing Rockburst Damage Potential with an Imbalanced Dataset. Mathematics 2022, 10, 3382. https://doi.org/10.3390/math10183382
Chen Y, Da Q, Liang W, Xiao P, Dai B, Zhao G. Bagged Ensemble of Gaussian Process Classifiers for Assessing Rockburst Damage Potential with an Imbalanced Dataset. Mathematics. 2022; 10(18):3382. https://doi.org/10.3390/math10183382
Chicago/Turabian StyleChen, Ying, Qi Da, Weizhang Liang, Peng Xiao, Bing Dai, and Guoyan Zhao. 2022. "Bagged Ensemble of Gaussian Process Classifiers for Assessing Rockburst Damage Potential with an Imbalanced Dataset" Mathematics 10, no. 18: 3382. https://doi.org/10.3390/math10183382
APA StyleChen, Y., Da, Q., Liang, W., Xiao, P., Dai, B., & Zhao, G. (2022). Bagged Ensemble of Gaussian Process Classifiers for Assessing Rockburst Damage Potential with an Imbalanced Dataset. Mathematics, 10(18), 3382. https://doi.org/10.3390/math10183382