Is the Increased Transmissibility of SARS-CoV-2 Variants Driven by within or Outside-Host Processes?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measuring Transmissibility
2.2. Mathematical Model
2.2.1. Virus Transmission Due to the Individuals’ Action
2.2.2. Kinetics of Virus Concentration
2.2.3. Probability of Infection
2.2.4. Model’s Results and Parameters
2.3. Modelling Effect of Within-Host and Outside-Host Processes on Transmissibility
2.4. Numerical Method
3. Results
3.1. Convergence Analysis
3.2. Reaction to Changes in Within-Host or Outside-Host Processes
3.2.1. Effect on Household Secondary Attack Rate
3.2.2. Effect on the Serial Interval
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- Time scale of the exposure: Little is known about the dynamics of the SARS-CoV-2 virus in the human body. In order to estimate the time scale of exposure, we used the results reported by Qinfen et al. [47] regarding the life cycle of SARS-CoV-1 in host cells. They found that the virus assembly and maturation was first detected around 7 h post-infection. Thus, it is plausible to use this characteristic time as the exposure time interval.
- Exposure to infection factor for contact and droplet nuclei mode of transmission: It is quite possible that not all the virus copies that are inhaled or reach the facial membranes cause infection. Therefore, we assumed, similar to Nicas and Best [44], that the fraction of the exposure via the contact route that causes infection () is .The fraction of the inhaled dose that causes infection was estimated to be roughly of the deposition functions, which provides the retention of particles in the lungs [77] and the nasal cavity, depending on particle size [78]. These functions were applied to the particle size distribution reported by Chen et al. [79], after a correction that considers evaporation [80].
Parameters | Parameter Description | Value | Unit | References |
---|---|---|---|---|
SARS-CoV-2 specific parameters | ||||
k | Dose-response coefficient | 410 | PFU | [45] |
Maximal viral concentration in sputum | 2· | copies/mL | [62] | |
Virus copies in PFU | 300 | copies/PFU | [46] | |
Incubation period mean | day | [30,48] | ||
Incubation period geometric std | [30,48] | |||
Time scale of the exposure | 6 | h | [47] | |
Individual parameters | ||||
B | Breathing rate | 10 | L/min | |
Fraction of breath exposure that lead to infection | [78] | |||
Surface area of a touch | 2 | cm | [44] | |
Rate of physical contacts in households | 3 | 1/d | [81] | |
Rate of face touching | 1/min | [44] | ||
Rate of fomite touching | 60 | 1/d | [82] | |
Rate of furniture touching | 1 | 1/min | [44] | |
Rate of hand cleaning | 3 | 1/d | [82] | |
Rate of sneezing | 4 | 1/d | [83] | |
Rate of coughing | 10 | 1/d | [84] | |
Rate of talking | 5 | 1/h | [85,86] | |
Volume of cough droplets µm | 0.0598 | mL | [87] | |
Volume of cough droplets µm | · | mL | [87] | |
area of contaminated area on environmental surfaces | 3.5 | m | [44,80] | |
Volume of sneeze droplets µm | 0.0025 | mL | [87] | |
Volume of sneeze droplets µm | 3· | mL | [87] | |
Volume of sneeze droplets µm | 4.35 | mL | [87] | |
Volume of sneeze droplets µm | 0.038 | mL | [87] | |
Volume of self inoculation | 0.01 | mL | [88] | |
fomite to hand transfer efficiency | [89] | |||
hand to fomite transfer efficiency | [89] | |||
hand to hand transfer efficiency | [44,89,90] | |||
Fraction of contact exposure that leads to infection | [44] | |||
efficiency of washing hands | 1 | |||
Virus degradation rate on hands | 6 | 1/h | [59] | |
Room parameters | ||||
Room surface area | 100 | m | ||
Room volume | 300 | m | ||
Furniture surface area | 80 | m | [91] | |
Fomite surface area | cm | [92] | ||
Rate of fomite cleaning | 2 | 1/d | [82] | |
Virus degradation rate on fomite | 6 | 1/h | [59] | |
Virus degradation rate on furniture | 6 | 1/h | [59] | |
Virus degradation rate as aerosol | 1 | 1/h | [59] | |
Air changes per hour | 1/h | [93,94] |
References
- Lauring, A.S.; Hodcroft, E.B. Genetic Variants of SARS-CoV-2—What Do They Mean? JAMA 2021, 325, 529–531. [Google Scholar] [CrossRef] [PubMed]
- Walensky, R.P.; Walke, H.T.; Fauci, A.S. SARS-CoV-2 Variants of Concern in the United States—Challenges and Opportunities. JAMA 2021, 325, 1037–1038. [Google Scholar] [CrossRef] [PubMed]
- Moelling, K. Within-host and between-host evolution in sars-cov-2—New variant’s source. Viruses 2021, 13, 751. [Google Scholar] [CrossRef] [PubMed]
- Grubaugh, N.D.; Hodcroft, E.B.; Fauver, J.R.; Phelan, A.L.; Cevik, M. Public health actions to control new SARS-CoV-2 variants. Cell 2021, 184, 1127–1132. [Google Scholar] [CrossRef]
- Gonzalez-Parra, G.; Martínez-Rodríguez, D.; Villanueva-Micó, R.J. Impact of a New SARS-CoV-2 Variant on the Population: A Mathematical Modeling Approach. Math. Comput. Appl. 2021, 26, 25. [Google Scholar] [CrossRef]
- Leung, N.H. Transmissibility and Transmission of Respiratory Viruses. Nat. Rev. Microbiol. 2021, 19, 528–545. [Google Scholar] [CrossRef]
- Wasik, B.R.; Bhushan, A.; Ogbunugafor, C.B.; Turner, P.E. Delayed transmission selects for increased survival of vesicular stomatitis virus. Evolution 2015, 69, 117–125. [Google Scholar] [CrossRef]
- Teyssou, E.; Soulie, C.; Visseaux, B.; Lambert-Niclot, S.; Ferre, V.; Marot, S.; Jary, A.; Sayon, S.; Zafilaza, K.; Leducq, V.; et al. The 501Y.V2 SARS-CoV-2 variant has an intermediate viral load between the 501Y.V1 and the historical variants in nasopharyngeal samples from newly diagnosed COVID-19 patients. J. Infect. 2021, 83, 119–145. [Google Scholar] [CrossRef]
- Walker, S.; Karina-Doris, V.; Gething, O.; Pritchard, E.; Jones, J.; House, T.; Bell, L.; Bell, J.; Newton, J.; Farrar, J.; et al. Increased infections, but not viral burden, with a new SARS-CoV-2 variant. medRxiv 2021. [Google Scholar] [CrossRef]
- Mok, B.W.Y.; Liu, H.; Deng, S.; Liu, J.; Zhang, A.J.; Lau, S.Y.; Liu, S.; Tam, R.C.Y.; Cremin, C.J.; Ng, T.T.L.; et al. Low dose inocula of SARS-CoV-2 Alpha variant transmits more efficiently than earlier variants in hamsters. Commun. Biol. 2021, 4, 1102. [Google Scholar] [CrossRef]
- Kumar, S.; Thambiraja, T.S.; Karuppanan, K.; Subramaniam, G. Omicron and Delta Variant of SARS-CoV-2: A Comparative Computational Study of Spike protein. bioRxiv 2021. [Google Scholar] [CrossRef] [PubMed]
- Nelson, G.; Buzko, O.; Patricia, S.; Niazi, K.; Rabizadeh, S.; Soon-Shiong, P. Molecular dynamic simulation reveals E484K mutation enhances spike RBD-ACE2 affinity and the 1 combination of E484K, K417N and N501Y mutations (501Y.V2 variant) induces conformational change greater than N501Y mutant alone, potentially resulting in an escape mutant. bioRxiv 2021. [Google Scholar] [CrossRef]
- Schuit, M.; Biryukov, J.; Beck, K.; Yolitz, J.; Bohannon, J.; Weaver, W.; Miller, D.; Holland, B.; Krause, M.; Freeburger, D.; et al. The stability of an isolate of the SARS-CoV-2 B.1.1.7 lineage in aerosols is similar to three earlier isolates. J. Infect. Dis. 2021, 224, 1641–1648. [Google Scholar] [CrossRef]
- Smither, S.J.; Eastaugh, L.S.; Findlay, J.S.; Lever, M.S. Experimental aerosol survival of SARS-CoV-2 in artificial saliva and tissue culture media at medium and high humidity. Emerg. Microbes Infect. 2020, 9, 1415–1417. [Google Scholar] [CrossRef] [PubMed]
- Pottage, T.; Garratt, I.; Onianwa, O.; Spencer, A.; Paton, S.; Verlander, N.Q.; Dunning, J.; Bennett, A. A comparison of persistence of SARS-CoV-2 variants on stainless steel. J. Hosp. Infect. 2021, 114, 163–166. [Google Scholar] [CrossRef]
- Vespignani, A.; Tian, H.; Dye, C.; Lloyd-Smith, J.O.; Eggo, R.M.; Shrestha, M.; Scarpino, S.V.; Gutierrez, B.; Kraemer, M.U.; Wu, J.; et al. Modelling COVID-19. Nat. Rev. Phys. 2020, 2, 279–281. [Google Scholar] [CrossRef]
- Din, A.; Li, Y.; Khan, T.; Zaman, G. Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China. Chaos Solitons Fractals 2020, 141, 110286. [Google Scholar] [CrossRef]
- Razzaq, O.A.; Rehman, D.U.; Khan, N.A.; Ahmadian, A.; Ferrara, M. Optimal surveillance mitigation of COVID’19 disease outbreak: Fractional order optimal control of compartment model. Results Phys. 2021, 20, 103715. [Google Scholar] [CrossRef]
- Pearson, C.A.; Russell, T.W.; Davies, N.G.; Kucharski, A.J.; CMMID COVID-19 Working Group; Edmunds, W.J.; Eggo, R.M. Estimates of severity and transmissibility of novel South Africa SARS-CoV-2 variant 501Y.V2. CMMID Repos. 2021, 50, 1–4. [Google Scholar]
- Davies, N.G.; Abbott, S.; Barnard, R.C.; Jarvis, C.I.; Kucharski, A.J.; Munday, J.D.; Pearson, C.A.B.; Russell, T.W.; Tully, D.C.; Washburne, A.D.; et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021, 3055, 1–16. [Google Scholar] [CrossRef]
- Yang, W.; Shaman, J. Development of a model-inference system for estimating epidemiological characteristics of SARS-CoV-2 variants of concern. Nat. Commun. 2021, 12, eabg3055. [Google Scholar] [CrossRef] [PubMed]
- Duives, D.; Chang, Y.; Sparnaaij, M.; Wouda, B.; Boschma, D.; Liu, Y.; Yuan, Y.; Daamen, W.; de Jong, M.; Teberg, C.; et al. The multi-dimensional challenges of controlling SARS-CoV-2 transmission in indoor spaces: Insights from the linkage of a microscopic pedestrian simulation and virus transmission models. medRxiv 2021. [Google Scholar] [CrossRef]
- Arav, Y.; Klausner, Z.; Fattal, E. Theoretical investigation of pre-symptomatic SARS-CoV-2 person-to-person transmission in households. Sci. Rep. 2021, 11, 14488. [Google Scholar] [CrossRef]
- Volz, E.; Mishra, S.; Chand, M.; Barrett, J.C.; Johnson, R.; Geidelberg, L.; Hinsley, W.R.; Laydon, D.J.; Dabrera, G.; O’Toole, Á.; et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 2021, 593, 266–269. [Google Scholar] [CrossRef]
- Munitz, A.; Yechezkel, M.; Dickstein, Y.; Yamin, D.; Gerlic, M. BNT162b2 vaccination effectively prevents the rapid rise of SARS-CoV-2 variant B.1.1.7 in high-risk populations in Israel. Cell Rep. Med. 2021, 2, 100264. [Google Scholar] [CrossRef]
- Park, J.E.; Ryu, Y. Transmissibility and severity of influenza virus by subtype. Infect. Genet. Evol. 2018, 65, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Black, A.J.; Geard, N.; McCaw, J.M.; McVernon, J.; Ross, J.V. Characterising pandemic severity and transmissibility from data collected during first few hundred studies. Epidemics 2017, 19, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Liu, D.; Liao, X.l.; Wu, X.b.; Jing, Q.l.; Zheng, J.z.; Liu, F.h.; Yang, S.g.; Bi, B.; Li, Z.h.; et al. Modes of contact and risk of transmission in COVID-19 among close contacts. In Digital Economies at Global Margins; MIT Press: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Koh, W.C.; Naing, L.; Chaw, L.; Rosledzana, M.A.; Alikhan, M.F.; Jamaludin, S.A.; Amin, F.; Omar, A.; Shazli, A.; Griffith, M.; et al. What do we know about SARS-CoV-2 transmission? A systematic review and meta-analysis of the secondary attack rate and associated risk factors. PLoS ONE 2020, 15, e0240205. [Google Scholar] [CrossRef] [PubMed]
- Bi, Q.; Wu, Y.; Mei, S.; Ye, C.; Zou, X.; Zhang, Z.; Liu, X.; Wei, L.; Truelove, S.A.; Zhang, T.; et al. Epidemiology and Transmission of COVID-19 in Shenzhen China: Analysis of 391 cases and 1286 of their close contacts. Lancet Infect. Dis. 2020, 3099, 911–919. [Google Scholar] [CrossRef]
- Koch-Davidovich, F. The Israeli Ministry of Health Data on the Source of Exposure of COVID-19 Patients to the Virus. Technical Report. 2020. Available online: https://fs.knesset.gov.il/globaldocs/MMM/f9e58b56-5bbf-ea11-8107-00155d0aee38/2_f9e58b56-5bbf-ea11-8107-00155d0aee38_11_15145.pdf (accessed on 18 July 2022).
- Fyles, M.; Fearon, E.; Overton, C.; Wingfield, T.; Medley, G.F.; Hall, I.; Pellis, L.; House, T. Using a household-structured branching process to analyse contact tracing in the SARS-CoV-2 pandemic. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200267. [Google Scholar] [CrossRef]
- Ghorui, N.; Ghosh, A.; Mondal, S.P.; Bajuri, M.Y.; Ahmadian, A.; Salahshour, S.; Ferrara, M. Identification of dominant risk factor involved in spread of COVID-19 using hesitant fuzzy MCDM methodology. Results Phys. 2021, 21, 103811. [Google Scholar] [CrossRef]
- Yang, S.; Lee, G.W.; Chen, C.M.; Wu, C.C.; Yu, K.P. The size and concentration of droplets generated by coughing in human subjects. J. Aerosol Med. Depos. Clear. Eff. Lung 2007, 20, 484–494. [Google Scholar] [CrossRef]
- Public Health England. SARS-CoV-2 Variants of Concern and Variants under Investigation in England—Technical Briefing 14. Technical Report. 2021. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/991343/Variants_of_Concern_VOC_Technical_Briefing_14.pdf (accessed on 18 July 2022).
- Peng, J.; Liu, J.; Mann, S.A.; Mitchell, A.M.; Laurie, M.T.; Sunshine, S.; Pilarowski, G.; Ayscue, P.; Kistler, A.; Vanaerschot, M.; et al. Estimation of Secondary Household Attack Rates for Emergent Spike L452R Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants Detected by Genomic Surveillance at a Community-Based Testing Site in San Francisco. Clin. Infect. Dis. 2022, 2022 74, 32–39. [Google Scholar] [CrossRef]
- Lindstrøm, J.C.; Engebretsen, S.; Kristoffersen, A.B.; Rø, G.Ø.I.; Palomares, A.D.L.; Engø-Monsen, K.; Madslien, E.H.; Forland, F.; Nygård, K.M.; Hagen, F.; et al. Increased transmissibility of the alpha SARS-CoV-2 variant: Evidence from contact tracing data in Oslo, January to February 2021. Infect. Dis. 2022, 54, 72–77. [Google Scholar] [CrossRef]
- Ng, O.T.; Koh, V.; Chiew, C.J.; Marimuthu, K.; Thevasagayam, N.M.; Mak, T.M.; Chua, J.K.; Ong, S.S.H.; Lim, Y.K.; Ferdous, Z.; et al. Impact of Delta Variant and Vaccination on SARS-CoV-2 Secondary Attack Rate Among Household Close Contacts. Lancet Reg. Health West. Pac. 2021, 17, 100299. [Google Scholar] [CrossRef]
- Pulliam, J.R.C.; van Schalkwyk, C.; Govender, N.; von Gottberg, A.; Cohen, C.; Groome, M.J.; Dushoff, J.; Mlisana, K.; Moultrie, H. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science 2022, 376, eabn4947. [Google Scholar] [CrossRef]
- UK Health Security Agency. SARS-CoV-2 Variants of Concern and Variants under Investigation in England—Technical Briefing 31. Technical Report. 2021. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1042367/technical_briefing-31-10-december-2021.pdf (accessed on 18 July 2022).
- Kutter, J.S.; Spronken, M.I.; Fraaij, P.L.; Fouchier, R.A.; Herfst, S. Transmission routes of respiratory viruses among humans. Curr. Opin. Virol. 2018, 28, 142–151. [Google Scholar] [CrossRef]
- Tankov, P. Financial Modelling with Jump Processes; CRC: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- He, X.; Lau, E.H.; Wu, P.; Deng, X.; Wang, J.; Hao, X.; Lau, Y.C.; Wong, J.Y.; Guan, Y.; Tan, X.; et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. medRxiv 2020. [Google Scholar] [CrossRef]
- Nicas, M.; Best, D. A study quantifying the hand-to-face contact rate and its potential application to predicting respiratory tract infection. J. Occup. Environ. Hyg. 2008, 5, 347–352. [Google Scholar] [CrossRef]
- Watanabe, T.; Bartrand, T.A.; Weir, M.H.; Omura, T.; Haas, C.N. Development of a dose-response model for SARS coronavirus. Risk Anal. 2010, 30, 1129–1138. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J. Dose-response Relation Deduced for Coronaviruses From Coronavirus Disease 2019, Severe Acute Respiratory Syndrome, and Middle East Respiratory Syndrome: Meta-analysis Results and its Application for Infection Risk Assessment of Aerosol Transmission. Clin. Infect. Dis. 2021, 73, e241–e245. [Google Scholar] [CrossRef] [PubMed]
- Qinfen, Z.; Jinming, C.; Xiaojun, H.; Huanying, Z.; Jicheng, H.; Ling, F.; Kunpeng, L.; Jingqiang, Z. The life cycle of SARS coronavirus in Vero E6 cells. J. Med. Virol. 2004, 73, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern. Med. 2020, 172, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, M.P.; Wein, L.M. Quantifying the routes of transmission for pandemic influenza. Bull. Math. Biol. 2008, 70, 820–867. [Google Scholar] [CrossRef] [PubMed]
- Fine, P.E. The Interval between Successive Cases of an Infectious Disease. Am. J. Epidemiol. 2003, 158, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Wallinga, J.; Lipsitch, M. How generation intervals shape the relationship between growth rates and reproductive numbers. Proc. R. Soc. B Biol. Sci. 2007, 274, 599–604. [Google Scholar] [CrossRef]
- Ganyani, T.; Kremer, C.; Chen, D.; Torneri, A.; Faes, C.; Wallinga, J.; Hens, N. Estimating the generation interval for COVID-19 based on symptom onset data. medRxiv 2020. [Google Scholar] [CrossRef]
- Du, Z.; Xu, X.; Wu, Y.; Wang, L.; Cowling, B.J.; Meyers, L.A. Serial Interval of COVID-19 among Publicly Reported Confirmed Cases. Emerg. Infect. Dis. 2020, 26, 1341–1343. [Google Scholar] [CrossRef]
- Zhao, S.; Gao, D.; Zhuang, Z.; Chong, M.; Cai, Y.; Ran, J.; Cao, P.; Wang, K.; Lou, Y.; Wang, W.; et al. Estimating the serial interval of the novel coronavirus disease (COVID-19): A statistical analysis using the public data in Hong Kong from January 16 to February 15, 2020. medRxiv 2020. [Google Scholar] [CrossRef]
- Jacot, D.; Greub, G.; Jaton, K.; Opota, O. Viral load of SARS-CoV-2 across patients and compared to other respiratory viruses. Microbes Infect. 2020, 22, 617–621. [Google Scholar] [CrossRef]
- Boschi, C.; Hoang, V.T.; Giraud-Gatineau, A.; Ninove, L.; Lagier, J.C.; La Scola, B.; Gautret, P.; Raoult, D.; Colson, P. Coinfections with SARS-CoV-2 and other respiratory viruses in Southeastern France: A matter of sampling time. J. Med. Virol. 2021, 93, 1878–1881. [Google Scholar] [CrossRef]
- Levine-Tiefenbrun, M.; Yelin, I.; Katz, R.; Herzel, E.; Golan, Z.; Schreiber, L.; Wolf, T.; Nadler, V.; Ben-Tov, A.; Kuint, J.; et al. Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nat. Med. 2021, 27, 790–792. [Google Scholar] [CrossRef] [PubMed]
- Tavori, J.; Levy, H. Super-Spreaders Out, Super-Spreading In: The Effects of Infectiousness Heterogeneity and Lockdowns on Herd Immunity. medRxiv 2021, arXiv:2101.09188v1. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.A.; Bennett, A.M. Persistence of influenza on surfaces. J. Hosp. Infect. 2017, 95, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, A.I. The influence of relative humidity on the aerosol stability of different strains of foot-and-mouth disease virus suspended in saliva. J. Gen. Virol. 1972, 15, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Kleiboeker, S.; Cowden, S.; Grantham, J.; Nutt, J.; Tyler, A.; Berg, A.; Altrich, M. SARS-CoV-2 viral load assessment in respiratory samples. J. Clin. Virol. 2020, 129, 104439. [Google Scholar] [CrossRef] [PubMed]
- Hitchock, G.; Tyrrell, D.A.; Bynoe, M.L. Vaccination of man with attentuated live adenovirus. Epidemiol. Infect. 1960, 58, 277–282. [Google Scholar] [CrossRef]
- Klausner, Z.; Klement, E.; Fattal, E. Modeling long distance dispersal of airborne foot-and-mouth disease virus as a polydisperse aerosol - Application to the emergence of a new strain from Egypt to Israel. Atmos. Environ. 2015, 122, 332–342. [Google Scholar] [CrossRef]
- Casella, B.; Roberts, G.O. Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications. Methodol. Comput. Appl. Probab. 2011, 13, 449–473. [Google Scholar] [CrossRef]
- Gan, H.H.; Twaddle, A.; Marchand, B.; Gunsalus, K.C. Structural Modeling of the SARS-CoV-2 Spike/Human ACE2 Complex Interface can Identify High-Affinity Variants Associated with Increased Transmissibility. J. Mol. Biol. 2021, 433, 167051. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Deng, A.; Li, K.; Hu, Y.; Li, Z.; Xiong, Q.; Liu, Z.; Guo, Q.; Zou, L.; Zhang, H.; et al. Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant. medRxiv 2021. [Google Scholar] [CrossRef] [PubMed]
- Backer, J.A.; Eggink, D.; Andeweg, S.P.; Veldhuijzen, I.K.; van Maarseveen, N.; Vermaas, K.; Vlaemynck, B.; Schepers, R.; van den Hof, S.; Reusken, C.B.; et al. Shorter serial intervals in SARS-CoV-2 cases with Omicron BA.1 variant compared with Delta variant, the Netherlands, 13 to 26 December 2021. Eurosurveillance 2022, 27, 2200042. [Google Scholar] [CrossRef]
- Buchholz, U.; an der Heiden, M. Serial interval in households infected with SARS-CoV-2 variant B.1.1.529 (Omicron) are even shorter compared to Delta. Epidemiol. Infect. 2022, 529, e165. [Google Scholar] [CrossRef]
- Del Águila-Mejía, J.; Wallmann, R.; Calvo-Montes, J.; Rodríguez-Lozano, J.; Valle-Madrazo, T.; Aginagalde-Llorente, A. Secondary Attack Rate, Transmission and Incubation Periods, and Serial Interval of SARS-CoV-2 Omicron Variant, Spain. Emerg. Infect. Dis. 2022, 28, 1224–1228. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Liu, C.; Wang, L.; Bai, Y.; Lau, E.H.Y.; Wu, P.; Cowling, B.J. Shorter serial intervals and incubation periods in SARS-CoV-2 variants than the SARS-CoV-2 ancestral strain. J. Travel Med. 2022, 5, taac052. [Google Scholar] [CrossRef]
- Peter, S.; Dittrich, P.; Ibrahim, B. Structure and hierarchy of sars-cov-2 infection dynamics models revealed by reaction network analysis. Viruses 2021, 13, 14. [Google Scholar] [CrossRef]
- Jain, N.; Jhunthra, S.; Garg, H.; Gupta, V.; Mohan, S.; Ahmadian, A.; Salahshour, S.; Ferrara, M. Prediction modelling of COVID using machine learning methods from B-cell dataset. Results Phys. 2021, 21, 103813. [Google Scholar] [CrossRef]
- Lythgoe, K.A.; Hall, M.; Ferretti, L.; de Cesare, M.; MacIntyre-Cockett, G.; Trebes, A.; Andersson, M.; Otecko, N.; Wise, E.L.; Moore, N.; et al. SARS-CoV-2 within-host diversity and transmission. Science 2021, 372, eabg0821. [Google Scholar] [CrossRef]
- Zwart, M.P.; Elena, S.F. Matters of Size: Genetic Bottlenecks in Virus Infection and Their Potential Impact on Evolution. Annu. Rev. Virol. 2015, 2, 161–179. [Google Scholar] [CrossRef]
- Hufsky, F.; Lamkiewicz, K.; Almeida, A.; Aouacheria, A.; Arighi, C.; Bateman, A.; Baumbach, J.; Beerenwinkel, N.; Brandt, C.; Cacciabue, M.; et al. Computational strategies to combat COVID-19: Useful tools to accelerate SARS-CoV-2 and coronavirus research. Briefings Bioinform. 2021, 22, 642–663. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, T.C.; Peters, J.I.; Williams, R.O. Influence of particle size on regional lung deposition—What evidence is there? Int. J. Pharm. 2011, 406, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Breysse, P.N.; Swift, D.L. Inhalability of large particles into the human nasal passage: In vivo studies instill air. Aerosol Sci. Technol. 1990, 13, 459–464. [Google Scholar] [CrossRef]
- Chen, S.C.; Chio, C.P.; Jou, L.J.; Liao, C.M. Viral kinetics and exhaled droplet size affect indoor transmission dynamics of influenza infection. Indoor Air 2009, 19, 401–413. [Google Scholar] [CrossRef]
- Xie, X.; Li, Y.; Chwang, A.T.Y.; Ho, P.L.; Seto, W.H. How far droplets can move in indoor environments–revisiting the Wells evaporation–falling curve. Indoor Air 2007, 17, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Glass, R.J.; Glass, L.M.; Beyeler, W.E.; Min, H.J. Targeted social distancing design for pandemic influenza. Emerg. Infect. Dis. 2006, 12, 1671–1681. [Google Scholar] [CrossRef]
- Kraay, A.N.; Hayashi, M.A.; Hernandez-Ceron, N.; Spicknall, I.H.; Eisenberg, M.C.; Meza, R.; Eisenberg, J.N. Fomite-mediated transmission as a sufficient pathway: A comparative analysis across three viral pathogens. BMC Infect. Dis. 2018, 18, 540. [Google Scholar] [CrossRef]
- Hansen, B.; Mygind, N. How often do normal persons sneeze and blow the nose? Rhinology 2002, 40, 10–12. [Google Scholar]
- Hsu, J.Y.; Stone, R.A.; Logan-Sinclair, R.B.; Worsdell, M.; Busst, C.M.; Chung, K.F. Coughing frequency in patients with persistent cough: Assessment using a 24 hour ambulatory recorder. Eur. Respir. J. 1994, 7, 1246–1253. [Google Scholar] [CrossRef]
- Jiahong, Y.; Liberman, M.; Cieri, C. Towards an integrated understanding of speaking rate in conversation. Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH 2006, 2, 541–544. [Google Scholar]
- Mehl, M.R.; Vazire, S.; Ramírez-Esparza, N.; Slatcher, R.B.; Pennebaker, J.W. Are women really more talkative than men? Science 2007, 317, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duguid, J.P. The size and the duration of air-carriage of respiratory droplets and droplet-nuclei. J. Hyg. 1946, 44, 471–479. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. USEPA Exposure Factors Handbook Chapter 7: Dermal Exposure Studies. In Exposure Factors Handbook; National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency: Washington, DC, USA, 2011. [Google Scholar]
- Greene, C.; Vadlamudi, G.; Eisenberg, M.; Foxman, B.; Koopman, J.; Xi, C. Fomite-fingerpad transfer efficiency (pick-up and deposit) of Acinetobacter baumannii—With and without a latex glove. Am. J. Infect. Control 2015, 43, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Rusin, P.; Maxwell, S.; Gerba, C. Comparative Surface-to-Hand and Fingertip-to-Mouth Transfer Efficiency of Gram-Positive Bacteria, Gram-Negative Bacteria, and Phage; Wiley Online Library: Hoboken, NJ, USA, 2002; pp. 585–592. [Google Scholar]
- Manuja, A.; Ritchie, J.; Buch, K.; Wu, Y.; Eichler, C.M.; Little, J.C.; Marr, L.C. Total surface area in indoor environments. Environ. Sci. Process. Impacts 2019, 21, 1384–1392. [Google Scholar] [CrossRef] [PubMed]
- Beamer, P.I.; Plotkin, K.R.; Gerba, C.P.; Sifuentes, L.Y.; Koenig, D.W.; Reynolds, K.A. Modeling of human viruses on hands and risk of infection in an office workplace using micro-activity data. J. Occup. Environ. Hyg. 2015, 12, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Zhang, Y.; Sun, Y.; Wang, P.; Zhang, Q.; Kong, X.; Sundell, J. Air Change Rates in Residential Buildings in Tianjin, China. Procedia Eng. 2017, 205, 2254–2258. [Google Scholar] [CrossRef]
- Yamamoto, N.; Shendell, D.G.; Winer, A.M.; Zhang, J. Residential air exchange rates in three major US metropolitan areas: Results from the Relationship among Indoor, Outdoor, and Personal Air Study 1999-2001. Indoor Air 2010, 20, 85–90. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arav, Y.; Fattal, E.; Klausner, Z. Is the Increased Transmissibility of SARS-CoV-2 Variants Driven by within or Outside-Host Processes? Mathematics 2022, 10, 3422. https://doi.org/10.3390/math10193422
Arav Y, Fattal E, Klausner Z. Is the Increased Transmissibility of SARS-CoV-2 Variants Driven by within or Outside-Host Processes? Mathematics. 2022; 10(19):3422. https://doi.org/10.3390/math10193422
Chicago/Turabian StyleArav, Yehuda, Eyal Fattal, and Ziv Klausner. 2022. "Is the Increased Transmissibility of SARS-CoV-2 Variants Driven by within or Outside-Host Processes?" Mathematics 10, no. 19: 3422. https://doi.org/10.3390/math10193422
APA StyleArav, Y., Fattal, E., & Klausner, Z. (2022). Is the Increased Transmissibility of SARS-CoV-2 Variants Driven by within or Outside-Host Processes? Mathematics, 10(19), 3422. https://doi.org/10.3390/math10193422