Automatic Data Clustering by Hybrid Enhanced Firefly and Particle Swarm Optimization Algorithms
Abstract
:1. Introduction
- Two variants of FA, namely crazy FA and variable step size FA, are hybridized individually with the standard PSO algorithm;
- The proposed hybrid algorithms are applied in an automatic data clustering task. The results obtained by the two planned hybrid algorithms have been compared with the existing HFAPSO;
- Ten UCI Machine Learning Repository datasets and eight Shape sets have been used for performance evaluation;
- Two clustering validity measures, CS and DB, have been used for analyzing the efficiency of these algorithms;
- The numerical result calculation is based on the CS as well as the DB validity index;
- The mean value and standard deviation for both the CS and DB validity index has been given;
- The main aim is to obtain the optimal clustering results.
2. Related Work
2.1. The Clustering Problem Description
2.2. The Clustering Validity Measures
2.2.1. Compact-Separated Index (CS Index)
2.2.2. Davis–Bouldin Index (DB Index)
2.3. Firefly Algorithm (FA)
Algorithm 1. Pseudo code for FA |
Start Initialized every firefly and random cluster centroid randomly; for ; Calculate the fitness function and as Equations (5) and (6) respectively and obtain the current best solution; As Equation (7) Intensity of light will be calculated; Define light absorption coefficient; while for ; for ; if Move towards as Equation (10) to refine cluster centers; end if According to Equation (9), attraction of fireflies changes with distance; New solution will be calculated and light intensity will be updated; end for end for Fireflies position will be updated based on ranking and the current best solution will be updated. End for end while End |
2.4. Particle Swarm Optimization Algorithm (PSO)
2.5. Hybrid Firefly Particle Swarm Optimization Algorithm (HFAPSO)
3. Proposed Methodology
3.1. Hybrid Crazy Firefly Particle Swarm Optimization Algorithm (HCFAPSO)
Algorithm 2. Pseudo code for HCFAPSO |
Start Initialize every firefly and random cluster centroid randomly; Evaluate fitness value; for ; Calculate the fitness function and as Equations (5) and (6) respectively and obtain the current best solution; if the current value of , then modify the current as best solution; ; end if end for while for ; for ; if Move towards as Equation (13); if ; will be the new solution; if ; Modify as new solution; end if end if end if Initialized randomly; Calculate the and position of every particle ; Evaluate fitness value by taking the function and ; if ; else if the fitness value is lesser than the overall best fitness value, then modify the new value as the global best value. ; Modify centroids of cluster following velocity and coordinates modifying Equations (11) and (12); end if end if end for end for end while End |
3.2. Hybrid Variable Step Size Firefly Particle Swarm Optimization Algorithm (HVSFAPSO)
Algorithm 3. Pseudo code for HVSFAPSO |
Start Initialized every firefly and random cluster centroid randomly; Evaluate fitness value; for ; Calculate the fitness function and as Equations (5) and (6) respectively and obtain the current best solution; if the current value of , then modify the Current as best solution; ; end if end for while for ; for ; if Move towards as Equations (8) and (9); Set the value of step size as Equation (14) if ; will be the new solution; if; Modify as new solution; end if end if end if Initialized randomly; Calculate the and position of every particle ; Evaluate fitness value by taking the function and ; if ; else if the fitness value is lesser than the overall best fitness value, then modify the new value as the global best value. ; Modify centroids of cluster following velocity and coordinates modifying Equations (11)and (12); end if end if end for end for end while End |
4. Results Analysis
4.1. System Configuration
4.2. Datasets Design
4.3. Results Discussion
5. Comparison Study of HFASO, HCFAPSO and HVSFAPSO Automatic Clustering Algorithms
6. Discussions
- In this work, two hybrid algorithms have been proposed to automatically cluster datasets by exploring the FA and PSO. Those algorithms start with a population of randomly generated individuals and try to optimize the population over a sequence of generations until the optimum solution is obtained.
- The proposed algorithms initially focus on searching for the best number of clusters and gradually move to obtain the globally optimal cluster centers.
- Two types of continuous fitness functions are designed on the basis of current clustering validation indices and the penalty functions designed for minimizing the amount of noise and to control the number of clusters [1].
- The CS and DB validity indexes are used as fitness functions to calculate the fitness of each firefly. The cluster center has been changed by the position of each firefly. The distance between two fireflies has been calculated using the Euclidean distance, where the position of each firefly has been updated using the fitness parameter.
- The effectiveness of the proposed clustering strategy has shown its efficiency with respect to the convergence graph, mean value, standard deviation value and the p-value generated by the Wilcoxon rank-sum test in comparison with HFAPSO to establish its effectiveness.
7. Conclusions and Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, C.; Yuen, K.K.F.; Coenen, F. Particle swarm Optimized Density-based Clustering and Classification: Supervised and unsupervised learning approaches. Swarm Evol. Comput. 2019, 44, 876–896. [Google Scholar] [CrossRef]
- Majhi, S.K.; Biswal, S. Optimal cluster analysis using hybrid K-Means and Ant Lion Optimizer. Karbala Int. J. Mod. Sci. 2018, 4, 347–360. [Google Scholar] [CrossRef]
- Agbaje, M.B.; Ezugwu, A.E.; Els, R. Automatic Data Clustering Using Hybrid Firefly Particle Swarm Optimization Algorithm. IEEE Access 2019, 7, 184963–184984. [Google Scholar] [CrossRef]
- Ezugwu, A.E.-S.; Agbaje, M.B.; Aljojo, N.; Els, R.; Chiroma, H.; Elaziz, M.A. A Comparative Performance Study of Hybrid Firefly Algorithms for Automatic Data Clustering. IEEE Access 2020, 8, 121089–121118. [Google Scholar] [CrossRef]
- Sarangi, S.K.; Panda, R.; Sarangi, A. Crazy firefly algorithm for function optimization. In Proceedings of the 2nd International Conference on Man and Machine Interfacing (MAMI), Bhubaneswar, India, 21–23 September 2017; pp. 1–5. [Google Scholar]
- Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 1, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.-H.; Su, M.-C.; Lai, E. A new cluster validity measure and its application to image compression. Pattern Anal. Appl. 2004, 7, 205–220. [Google Scholar] [CrossRef]
- Deeb, H.; Sarangi, A.; Mishra, D.; Sarangi, S.K. Improved Black Hole optimization algorithm for data clustering. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 5020–5029. [Google Scholar] [CrossRef]
- Sharma, M.; Chhabra, J.K. Sustainable automatic data clustering using hybrid PSO algorithm with mutation. Sustain. Comput. Inform. Syst. 2019, 23, 144–157. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, H.; Luo, Q.; Abdel-Baset, M. Automatic data clustering using nature-inspired symbiotic organism search algorithm. Knowl.-Based Syst. 2019, 163, 546–557. [Google Scholar] [CrossRef]
- Rajah, V.; Ezugwu, A.E. Hybrid Symbiotic Organism Search algorithms for Automatic Data Clustering. In Proceedings of the Conference on Information Communications Technology and Society (ICTAS), Durban, South Africa, 9–10 March 2022; pp. 1–9. [Google Scholar]
- Pacheco, T.M.; Gonçalves, L.B.; Ströele, V.; Soares, S.S.R.F. An Ant Colony Optimization for Automatic Data Clustering Problem. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar]
- Yang, X.S. Firefly Algorithm, Nature-Inspired Metaheuristic Algorithms; Luniver Press: Cambridge, MA, USA, 2008; pp. 79–90. [Google Scholar]
- Yang, X.S. Firefly Algorithms for Multimodal Optimization. In Stochastic Algorithms: Foundations and Applications; Watanabe, O., Zeugmann, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5792, pp. 169–178. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Xia, X.; Gui, L.; He, G.; Xie, C.; Wei, B.; Xing, Y.; Wu, R.; Tang, Y. A hybrid optimizer based on firefly algorithm and particle swarm optimization algorithm. J. Comput. Sci. 2018, 26, 488–500. [Google Scholar] [CrossRef]
- Samal, S.; Sarangi, S.K.; Sarangi, A. Analysis of Adaptive Mutation in Crazy Particle Swarm Optimization. In Proceedings of the 2020 International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE), Keonjhar, India, 29–31 July 2020; pp. 1–5. [Google Scholar]
- Alhmouz, O.; Abrar, S.; Iqbal, N.; Zerguine, A. A Variable Step-Size Blind Equalization Algorithm Based on Particle Swarm Optimization. In Proceedings of the 14th International Wireless Communications & Mobile Computing Conference (IWCMC), Limassol, Cyprus, 25–29 June 2018; pp. 1357–1361. [Google Scholar]
- Zhao, J.; Chen, W.; Ye, J.; Wang, H.; Sun, H.; Lee, I. Firefly Algorithm Based on Level-Based Attracting and Variable Step Size. IEEE Access 2020, 8, 58700–58716. [Google Scholar] [CrossRef]
- Bache, K.; Lichman, M. UCI Machine Learning Repository; University of California, School of Information and Computer Science: Irvine, CA, USA, 2013. [Google Scholar]
- Clustering Basic Benchmark. Available online: http://cs.joensuu.fi/sipu/datasets/ (accessed on 25 November 2019).
- Samanta, S.R.; Mallick, P.K.; Pattnaik, P.K.; Mohanty, J.R.; Polkowski, Z. (Eds.) Cognitive Computing for Risk Management; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Mukherjee, A.; Singh, A.K.; Mallick, P.K.; Samanta, S.R. Portfolio Optimization for US-Based Equity Instruments Using Monte-Carlo Simulation. In Cognitive Informatics and Soft Computing. Lecture Notes in Networks and Systems; Mallick, P.K., Bhoi, A.K., Barsocchi, P., de Albuquerque, V.H.C., Eds.; Springer: Singapore, 2022; Volume 375. [Google Scholar] [CrossRef]
HFAPSO | HCFAPSO | HVSFAPSO | |||
---|---|---|---|---|---|
Value | Parameters | Value | Parameters | Value | Parameters |
nPop | 25 | nPop | 25 | nPop | 25 |
gamma | 1 | gamma | 1 | gamma | 1 |
beta0 | 2.0 | beta0 | 2.0 | beta0 | 2.0 |
alpha | 0.2 | alpha | 0.2 | alpha | 0.2 |
alpha_damp | 0.98 | alpha_damp | 0.98 | alpha_damp | 0.98 |
Maxit | 200 | Maxit | 200 | Maxit | 200 |
W | 1 | W | 1 | W | 1 |
Wdamp | 0.99 | Wdamp | 0.99 | Wdamp | 0.99 |
C1 | 1.5 | C1 | 1.5 | C1 | 1.5 |
C2 | 2.0 | C2 | 2.0 | C2 | 2.0 |
Pr | 1 | ||||
Sgnr | −1 | ||||
Vdcraziness | 0.95 |
Sl. No | Datasets Used | Type of Dataset Used | Total Number of Data Points(N) | Dimensions of Datasets (D) | Existing Number of Clusters |
---|---|---|---|---|---|
1 | Iris | UCI dataset | 150 | 4 | 3 |
2 | Yeast | UCI dataset | 1484 | 8 | 10 |
3 | Wine | UCI dataset | 178 | 13 | 3 |
4 | Thyroid | UCI dataset | 215 | 5 | 2 |
5 | Spiral | Shape set | 312 | 2 | 3 |
6 | Path based | Shape set | 300 | 2 | 3 |
7 | Jain | Shape set | 373 | 2 | 2 |
8 | Hepatitis | UCI dataset | 155 | 19 | 2 |
9 | Heart | UCI dataset | 270 | 13 | 2 |
10 | Glass | UCI dataset | 214 | 9 | 7 |
11 | Flame | Shape set | 240 | 2 | 2 |
12 | Compound | Shape set | 399 | 2 | 6 |
13 | Breast | UCI dataset | 699 | 9 | 2 |
14 | Wdbc | UCI dataset | 569 | 32 | 2 |
15 | R15 | Shape set | 600 | 2 | 15 |
16 | Leaves | UCI dataset | 1600 | 64 | 100 |
17 | D31 | Shape set | 3100 | 2 | 31 |
18 | Aggregation | Shape set | 788 | 2 | 7 |
Dataset Used | CS-Index | DB-Index | ||||||
---|---|---|---|---|---|---|---|---|
Best | Worst | Average | StaDev. | Best | Worst | Average | StDev. | |
Iris | 0.7191 | 0.8488 | 0.7438 | 0.0382 | 0.57 | 0.9155 | 0.6739 | 0.1168 |
Yeast | 0.5204 | 0.7421 | 0.5395 | 0.0578 | 0.4382 | 1.1832 | 0.8143 | 0.2385 |
Wine | 0.8828 | 1.2226 | 0.9433 | 0.0891 | 0.8002 | 1.222 | 0.9835 | 0.1782 |
Thyroid | 0.6408 | 0.6408 | 0.6408 | 0.0000 | 0.4813 | 1.0118 | 0.6765 | 0.2003 |
Spiral | 0.5541 | 0.979 | 0.7766 | 0.1149 | 0.7273 | 0.8173 | 0.7633 | 0.0340 |
Path based | 0.4441 | 0.9713 | 0.6976 | 0.1757 | 0.6249 | 0.8409 | 0.6975 | 0.0475 |
Jain | 0.4848 | 0.8126 | 0.6523 | 0.0729 | 0.6478 | 0.7226 | 0.6268 | 0.0359 |
Hepatitis | 0.5298 | 0.5298 | 0.5298 | 0.0000 | 0.4318 | 0.5236 | 0.4529 | 0.0263 |
Heart | 0.5974 | 0.5974 | 0.5974 | 0.0000 | 0.4515 | 0.6333 | 0.5150 | 0.0617 |
Glass | 0.0607 | 0.0607 | 0.0607 | 0.0000 | 0.334 | 0.9849 | 0.7447 | 0.7379 |
Flame | 0.3846 | 1.0101 | 0.5195 | 0.1860 | 0.63 | 0.8024 | 0.7359 | 0.0501 |
Compound | 0.5032 | 0.7732 | 0.7019 | 0.0989 | 0.4931 | 0.5878 | 0.5170 | 0.0281 |
Breast | 0.5996 | 1.1514 | 0.8844 | 0.2382 | 0.6519 | 1.4911 | 0.9730 | 0.3284 |
Wdbc | 0.0712 | 0.0712 | 0.0712 | 0.0000 | 0.0507 | 0.5459 | 0.0801 | 0.1035 |
R15 | 0.6876 | 0.9129 | 0.7235 | 0.0685 | 0.714 | 0.8957 | 0.7860 | 0.0565 |
Leaves | 0.4919 | 0.6994 | 0.5124 | 0.0530 | 0.5833 | 1.5194 | 1.0337 | 0.4390 |
D31 | 0.7127 | 1.1947 | 0.8822 | 0.1481 | 0.7929 | 0.9043 | 0.8350 | 0.0394 |
Aggregation | 0.7352 | 1.0031 | 0.8272 | 0.1027 | 0.7199 | 0.7751 | 0.7354 | 0.0185 |
Dataset Used | CS-Index | DB-Index | ||||||
---|---|---|---|---|---|---|---|---|
Best | Worst | Average | StDev. | Best | Worst | Average | StDev. | |
Iris | 0.7191 | 0.9801 | 0.7478 | 0.0478 | 0.57 | 0.933 | 0.6960 | 0.1335 |
Yeast | 0.5204 | 0.6904 | 0.5799 | 0.0810 | 0.443 | 1.3793 | 0.9660 | 0.2619 |
Wine | 0.8828 | 1.0289 | 0.9334 | 0.0814 | 0.8002 | 1.2419 | 0.9908 | 0.1299 |
Thyroid | 0.6408 | 0.6408 | 0.6408 | 0.0000 | 0.4814 | 1.0111 | 0.6660 | 0.1863 |
Spiral | 0.6861 | 0.9457 | 0.7653 | 0.0999 | 0.7502 | 0.8092 | 0.7990 | 0.0092 |
Path based | 0.6493 | 1.0068 | 0.7685 | 0.1301 | 0.673 | 0.7303 | 0.6854 | 0.0191 |
Jain | 0.6546 | 0.7724 | 0.6781 | 0.0418 | 0.65 | 0.6778 | 0.6555 | 0.0078 |
Hepatitis | 0.5298 | 0.5298 | 0.5298 | 0.0000 | 0.4319 | 0.4865 | 0.4500 | 0.0212 |
Heart | 0.5974 | 0.5974 | 0.5974 | 0.0000 | 0.456 | 0.6291 | 0.5249 | 0.0616 |
Glass | 0.0607 | 0.0607 | 0.0607 | 0.0000 | 0.4017 | 0.9068 | 0.7263 | 0.1342 |
Flame | 0.3948 | 1.0767 | 0.5336 | 0.2206 | 0.7682 | 0.8142 | 0.7818 | 0.0107 |
Compound | 0.7179 | 0.7732 | 0.7672 | 0.0144 | 0.4931 | 0.5568 | 0.5101 | 0.0201 |
Breast | 0.6862 | 1.1681 | 1.0525 | 0.0962 | 0.653 | 1.3761 | 0.9408 | 0.2951 |
Wdbc | 0.0712 | 0.0712 | 0.0712 | 0.0000 | 0.0507 | 0.0796 | 0.0554 | 0.0073 |
R15 | 0.6876 | 0.9395 | 0.7171 | 0.0528 | 0.7299 | 0.9042 | 0.7997 | 0.0591 |
Leaves | 0.4919 | 0.8196 | 0.6049 | 0.1299 | 0.6205 | 1.6482 | 1.0986 | 0.4523 |
D31 | 0.7713 | 0.9634 | 0.8076 | 0.1157 | 0.793 | 0.9184 | 0.8455 | 0.0368 |
Aggregation | 0.735 | 1.0323 | 0.8577 | 0.0936 | 0.72 | 0.8068 | 0.7348 | 0.0200 |
Dataset Used | CS-Index | DB-Index | ||||||
---|---|---|---|---|---|---|---|---|
Best | Worst | Average | StDev. | Best | Worst | Average | StDev. | |
Iris | 0.7191 | 0.8828 | 0.7421 | 0.0322 | 0.57 | 0.9491 | 0.6694 | 0.1162 |
Yeast | 0.5204 | 0.7888 | 0.5553 | 0.0770 | 0.4381 | 1.1058 | 0.7978 | 0.2459 |
Wine | 0.8828 | 1.2393 | 0.9252 | 0.0776 | 0.5733 | 1.2492 | 0.9904 | 0.2010 |
Thyroid | 0.6408 | 0.6408 | 0.6408 | 0.0000 | 0.4814 | 0.9486 | 0.6433 | 0.1638 |
Spiral | 0.5287 | 1.0292 | 0.7678 | 0.1251 | 0.7964 | 0.8188 | 0.7647 | 0.0335 |
Path based | 0.5 | 0.9482 | 0.6992 | 0.1692 | 0.6261 | 0.7618 | 0.6858 | 0.0301 |
Jain | 0.4905 | 0.6546 | 0.6414 | 0.0608 | 0.6372 | 0.6562 | 0.6263 | 0.0356 |
Hepatitis | 0.5298 | 0.5298 | 0.5298 | 0.0000 | 0.4318 | 0.4909 | 0.4488 | 0.0201 |
Heart | 0.5974 | 0.5974 | 0.5974 | 0.0000 | 0.4518 | 0.6548 | 0.5250 | 0.0660 |
Glass | 0.0607 | 0.0607 | 0.0608 | 0.0009 | 0.3337 | 1.0041 | 0.7568 | 0.7642 |
Flame | 0.3712 | 0.9792 | 0.5640 | 0.2007 | 0.6705 | 0.8154 | 0.7330 | 0.0468 |
Compound | 0.5032 | 0.7732 | 0.7309 | 0.0840 | 0.4931 | 0.5705 | 0.5144 | 0.0267 |
Breast | 0.5996 | 1.1565 | 0.9094 | 0.2375 | 0.6519 | 1.3643 | 0.9608 | 0.3128 |
Wdbc | 0.0712 | 0.0712 | 0.0712 | 0.0000 | 0.0507 | 0.0598 | 0.0531 | 0.0034 |
R15 | 0.6876 | 0.9077 | 0.7126 | 0.0440 | 0.714 | 0.9096 | 0.7866 | 0.0605 |
Leaves | 0.4919 | 0.6965 | 0.5132 | 0.0613 | 0.5854 | 1.5006 | 1.0215 | 0.4290 |
D31 | 0.711 | 0.9539 | 0.8062 | 0.0852 | 0.7929 | 0.9297 | 0.8392 | 0.0436 |
Aggregation | 0.7352 | 1.0737 | 0.8469 | 0.1043 | 0.7199 | 0.7739 | 0.7338 | 0.0163 |
Dataset Used | Algorithm | CS Index | DB Index | ||
---|---|---|---|---|---|
Methods | Average Value | Standard Deviation | Average Value | Standard Deviation | |
Iris | HFAPSO | 0.7438 | 0.0382 | 0.06739 | 0.1168 |
HCFAPSO | 0.7478 | 0.0478 | 0.6960 | 0.1335 | |
HVSFAPSO | 0.7421 | 0.0322 | 0.6694 | 0.1162 | |
Yeast | HFAPSO | 0.5395 | 0.0578 | 0.8143 | 0.2385 |
HCFAPSO | 0.5799 | 0.0810 | 0.9660 | 0.2619 | |
HVSFAPSO | 0.5553 | 0.0770 | 0.7978 | 0.2459 | |
Wine | HFAPSO | 0.9433 | 0.0891 | 0.9835 | 0.1782 |
HCFAPSO | 0.9334 | 0.0814 | 0.9908 | 0.1299 | |
HVSFAPSO | 0.9252 | 0.0776 | 0.9904 | 0.2010 | |
Thyroid | HFAPSO | 0.6408 | 0.0000 | 0.6765 | 0.2003 |
HCFAPSO | 0.6408 | 0.0000 | 0.6660 | 0.1863 | |
HVSFAPSO | 0.6408 | 0.0000 | 0.6433 | 0.1638 | |
Spiral | HFAPSO | 0.7766 | 0.1149 | 0.7633 | 0.0340 |
HCFAPSO | 0.7653 | 0.0999 | 0.7990 | 0.0092 | |
HVSFAPSO | 0.7678 | 0.1251 | 0.7647 | 0.0335 | |
Pathbased | HFAPSO | 0.6976 | 0.1757 | 0.6975 | 0.0475 |
HCFAPSO | 0.7658 | 0.1301 | 0.6854 | 0.0191 | |
HVSFAPSO | 0.6992 | 0.1692 | 0.6858 | 0.0301 | |
Jain | HFAPSO | 0.6523 | 0.0729 | 0.6268 | 0.0359 |
HCFAPSO | 0.6781 | 0.0418 | 0.6555 | 0.0078 | |
HVSFAPSO | 0.6414 | 0.0608 | 0.6263 | 0.0356 | |
Hepatitis | HFAPSO | 0.5298 | 0.0000 | 0.4529 | 0.0263 |
HCFAPSO | 0.5298 | 0.0000 | 0.4500 | 0.0212 | |
HVSFAPSO | 0.5298 | 0.0000 | 0.4488 | 0.0201 | |
Heart | HFAPSO | 0.5974 | 0.0000 | 0.5150 | 0.0617 |
HCFAPSO | 0.5974 | 0.0000 | 0.5249 | 0.0616 | |
HVSFAPSO | 0.5974 | 0.0000 | 0.5250 | 0.0660 | |
Glass | HFAPSO | 0.0607 | 0.0000 | 0.7447 | 0.7379 |
HCFAPSO | 0.0607 | 0.0000 | 0.7263 | 0.1342 | |
HVSFAPSO | 0.0608 | 0.0009 | 0.7568 | 0.7642 | |
Flame | HFAPSO | 0.5195 | 0.1860 | 0.7359 | 0.0501 |
HCFAPSO | 0.5336 | 0.2206 | 0.7818 | 0.0107 | |
HVSFAPSO | 0.5640 | 0.2007 | 0.7330 | 0.0468 | |
Compound | HFAPSO | 0.7019 | 0.0989 | 0.5170 | 0.0281 |
HCFAPSO | 0.7672 | 0.0144 | 0.5101 | 0.0201 | |
HVSFAPSO | 0.7309 | 0.0840 | 0.5144 | 0.0267 | |
Breast | HFAPSO | 0.8844 | 0.2382 | 0.9730 | 0.3284 |
HCFAPSO | 1.0525 | 0.0962 | 0.9408 | 0.2951 | |
HVSFAPSO | 0.9094 | 0.2375 | 0.9608 | 0.3128 | |
Wdbc | HFAPSO | 0.0712 | 0.0000 | 0.0801 | 0.1035 |
HCFAPSO | 0.0712 | 0.0000 | 0.0554 | 0.0073 | |
HVSFAPSO | 0.0712 | 0.0000 | 0.0531 | 0.0034 | |
R15 | HFAPSO | 0.7235 | 0.0685 | 0.7860 | 0.0565 |
HCFAPSO | 0.7171 | 0.0528 | 0.7997 | 0.0591 | |
HVSFAPSO | 0.7126 | 0.0440 | 0.7866 | 0.0605 | |
Leaves | HFAPSO | 0.5124 | 0.0530 | 1.0337 | 0.4390 |
HCFAPSO | 0.6049 | 0.1299 | 1.0986 | 0.4523 | |
HVSFAPSO | 0.5132 | 0.0613 | 1.0215 | 0.4290 | |
D31 | HFAPSO | 0.8822 | 0.1481 | 0.8350 | 0.0394 |
HCFAPSO | 0.8076 | 0.1157 | 0.8455 | 0.0368 | |
HVSFAPSO | 0.8062 | 0.0852 | 0.8392 | 0.0436 | |
Aggregation | HFAPSO | 0.8272 | 0.1027 | 0.7354 | 0.0185 |
HCFAPSO | 0.8577 | 0.0936 | 0.7348 | 0.0200 | |
HVSFAPSO | 0.8469 | 0.1043 | 0.7338 | 0.0163 |
Datasets | CS-Index | DB-Index | ||
---|---|---|---|---|
HCFAPSO vs. HFAPSO | HVSFAPSO vs. HFAPSO | HCFAPSO vs. HFAPSO | HVSFAPSO vs. HFAPSO | |
Iris | 0 | 0 | 0.222 | 0.222 |
Yeast | 0 | 0 | 0.050 | 0.011 |
Wine | 0 | 0 | 0.031 | 0.012 |
Thyroid | 0 | 0 | 0.012 | 0.015 |
Spiral | 0.002 | 0.011 | 0 | 0 |
Pathbased | 0.212 | 0 | 0 | 0 |
Jain | 0.411 | 0 | 0 | 0 |
Hepatitis | 0.003 | 0 | 0.310 | 0.311 |
Heart | 0.008 | 0.025 | 0 | 0 |
Glass | 1 | 0.022 | 0 | 0 |
Flame | 0 | 0 | 0 | 0.001 |
Compound | 0 | 0.011 | 0.453 | 0.156 |
Breast | 0.012 | 0 | 0.178 | 0 |
Wdbc | 0 | 0 | 0 | 0 |
R15 | 0.255 | 0.012 | 0.004 | 0 |
Leaves | 0 | 0 | 0.006 | 0.012 |
D31 | 0 | 0.016 | 0 | 0.121 |
Aggregation | 0.021 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behera, M.; Sarangi, A.; Mishra, D.; Mallick, P.K.; Shafi, J.; Srinivasu, P.N.; Ijaz, M.F. Automatic Data Clustering by Hybrid Enhanced Firefly and Particle Swarm Optimization Algorithms. Mathematics 2022, 10, 3532. https://doi.org/10.3390/math10193532
Behera M, Sarangi A, Mishra D, Mallick PK, Shafi J, Srinivasu PN, Ijaz MF. Automatic Data Clustering by Hybrid Enhanced Firefly and Particle Swarm Optimization Algorithms. Mathematics. 2022; 10(19):3532. https://doi.org/10.3390/math10193532
Chicago/Turabian StyleBehera, Mandakini, Archana Sarangi, Debahuti Mishra, Pradeep Kumar Mallick, Jana Shafi, Parvathaneni Naga Srinivasu, and Muhammad Fazal Ijaz. 2022. "Automatic Data Clustering by Hybrid Enhanced Firefly and Particle Swarm Optimization Algorithms" Mathematics 10, no. 19: 3532. https://doi.org/10.3390/math10193532
APA StyleBehera, M., Sarangi, A., Mishra, D., Mallick, P. K., Shafi, J., Srinivasu, P. N., & Ijaz, M. F. (2022). Automatic Data Clustering by Hybrid Enhanced Firefly and Particle Swarm Optimization Algorithms. Mathematics, 10(19), 3532. https://doi.org/10.3390/math10193532