Cloud-Edge-Terminal-Based Synchronized Decision-Making and Control System for Municipal Solid Waste Collection and Transportation
Abstract
:1. Introduction
2. Literature Review
2.1. Smart Waste Logistics Management Enabled by IoT
2.2. Cloud-Edge Collaboration Concept and Its Application
2.3. Synchronized Optimization of Complex Systems under Dynamics
2.4. Literature Summary
3. Problems Description
3.1. Operation Process of the MSWCT System
3.2. Analysis of the Operation Process of the MSWCT System
4. Cloud-Edge-Terminal-Based Synchronized Decision-Making and Control System for Waste Collection and Transportation
4.1. Introduction to the Framework and Modules of CET-SDCS for MSWCT
4.1.1. Terminal Layer
4.1.2. Edge Layer
- Edge device layer
- Edge service layer
4.1.3. Cloud Layer
- Cloud service layer
- Cloud application layer
4.2. CET-SDCS for MSWCT Endpoint Smart Device and Edge Computing Device Deployment
4.2.1. Terminal Smart Device Deployment
4.2.2. Edge Computing Device Deployment
4.2.3. System Process Reengineering
4.3. Operation Mechanism of CET-SDCS for MSWCT
4.3.1. The Dynamics Classification of the MSWCT System in Cloud-Edge-Terminal Architecture
4.3.2. The Synchronization Decision-Making Mechanism of MSWCT System in Cloud-Edge-Terminal Architecture
- Three levels of synchronization
- Two stages of decision-making
5. Case Study
5.1. The Operation of the MSWCT System and Its Challenges
5.2. Re-Engineering Waste Collection and Transportation Operations
5.3. Benefits of CET-SDCS for MSWCT
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, A.; Wang, J.X.; Farooque, M.; Wang, Y.; Choi, T.M. Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research. Transp. Res. Pt. E-Logist. Transp. Rev. 2021, 155, 102509. [Google Scholar] [CrossRef]
- Zhou, M.H.; Shen, S.L.; Xu, Y.S.; Zhou, A.N. New policy and implementation of municipal solid waste classification in Shanghai, China. Int. J. Environ. Res. Public Health 2019, 16, 3099. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Hannan, M.A.; Begum, R.A.; Basri, H.; Scavino, E. Backtracking search algorithm in CVRP models for efficient solid waste collection and route optimization. Waste Manag. 2017, 1, 117–128. [Google Scholar] [CrossRef]
- Yadav, V.; Karmakar, S. Sustainable collection and transportation of municipal solid waste in urban centers. Sust. Cities Soc. 2020, 53, 101937. [Google Scholar] [CrossRef]
- Li, Y.P.; Huang, G.H.; Cui, L.; Liu, J. Mathematical Modeling for Identifying Cost-Effective Policy of Municipal Solid Waste Management under Uncertainty. J. Environ. Inform. 2019, 34, 55–67. [Google Scholar] [CrossRef]
- Cleophas, C.; Cottrill, C.; Ehmke, J.F.; Tierney, K. Collaborative urban transportation: Recent advances in theory and practice. Eur. J. Oper. Res. 2019, 273, 801–816. [Google Scholar] [CrossRef]
- Shao, S.; Xu, S.X.; Huang, G.Q. Variable neighborhood search and tabu search for auction-based waste collection synchronization. Transp. Res. Pt. B-Methodol. 2020, 133, 1–20. [Google Scholar] [CrossRef]
- Anagnostopoulos, T.; Zaslavsky, A.; Kolomvatsos, K.; Medvedev, A.; Amirian, P.; Morley, J.; Hadjiefthymiades, S. Challenges and opportunities of waste management in IoT-enabled smart cities: A survey. IEEE Trans. Sustain. Comput. 2017, 2, 275–289. [Google Scholar] [CrossRef]
- Thürer, M.; Pan, Y.H.; Qu, T.; Luo, H.; Li, C.D.; Huang, G.Q. Internet of Things (IoT) driven kanban system for reverse logistics: Solid waste collection. J. Intell. Manuf. 2019, 30, 2621–2630. [Google Scholar] [CrossRef]
- Zhang, A.; Venkatesh, V.G.; Liu, Y.; Wan, M.; Qu, T.; Huisingh, D. Barriers to smart waste management for a circular economy in China. J. Clean Prod. 2019, 240, 118198. [Google Scholar] [CrossRef] [Green Version]
- Pardini, K.; Rodrigues, J.J.P.C.; Kozlov, S.A.; Kumar, N.; Furtado, V. IoT-Based Solid Waste Management Solutions: A Survey. J. Sens. Actuator Netw. 2019, 8, 5. [Google Scholar] [CrossRef]
- Salehi-Amiri, A.; Akbapour, N.; Hajiaghaei-Keshteli, M.; Gajpal, Y.; Jabbarzadeh, A. Designing an effective two-stage, sustainable, and IoT based waste management system. Renew. Sust. Energ. Rev. 2022, 157, 112031. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Bayat, R.; Hosseinzadeh-Bandbafha, H.; Afrasyabi, H.; Chau, K.W. Modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management-A case study in Tehran Metropolis of Iran. J. Clean Prod. 2017, 148, 427–440. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Bayat, R.; Hosseinzadeh-Bandbafha, H.; Afrasyabi, H.; Berrada, A. Prognostication of energy use and environmental impacts for recycle system of municipal solid waste management. J. Clean Prod. 2017, 154, 602–613. [Google Scholar] [CrossRef]
- Mishra, M.; Hota, S.K.; Ghosh, S.K.; Sarkar, B. Controlling waste and carbon emission for a sustainable closed-loop supply chain management under a cap-and-trade strategy. Mathematics 2020, 8, 466. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Mohammadkashi, N.; Naderloo, L.; Abbasi, M.; Chau, K.W. Principal of environmental life cycle assessment for medical waste during COVID-19 outbreak to support sustainable development goals. Sci. Total Environ. 2022, 827, 154416. [Google Scholar] [CrossRef]
- Jacobsen, R.; Willeghems, G.; Gellynck, X.; Buysse, J. Increasing the Quantity of Separated Post- consumer Plastics for Reducing Combustible Household Waste: The Case of Rigid Plastics in Flanders. Waste Manag. 2018, 78, 708–716. [Google Scholar] [CrossRef]
- Li, Y.; Peyman, M.; Panadero, J.; Juan, A.A.; Xhafa, F. IoT Analytics and Agile Optimization for Solving Dynamic Team Orienteering Problems with Mandatory Visits. Mathematics 2022, 10, 982. [Google Scholar] [CrossRef]
- Faccio, M.; Persona, A.; Zanin, G. Waste collection multi objective model with real time traceability data. Waste Manag. 2011, 31, 2391–2405. [Google Scholar] [CrossRef]
- Mamun, M.A.; Hannan, M.A.; Hussain, A.; Basri, H. Theoretical model and implementation of a real time intelligent bin status monitoring system using rule based decision algorithms. Expert Syst. Appl. 2016, 48, 76–88. [Google Scholar] [CrossRef]
- Yusof, N.M.; Zulkifli, M.F.; Yusof, M.; Azman, A.A. Smart Waste Bin with Real-time Monitoring System. Int. J. Eng Technol. 2018, 7, 725–729. [Google Scholar] [CrossRef]
- Ramos, T.R.P.; de Morais, C.S.; Barbosa-Póvoa, A. The Smart Waste Collection Routing Problem: Alternative Operational Management Approaches. Expert Syst. Appl. 2018, 103, 146–158. [Google Scholar] [CrossRef]
- Idwan, S.; Mahmood, I.; Zubairi, J.A.; Matar, I. Optimal Management of Solid Waste in Smart Cities Using Internet of Things. Wirel. Pers. Commun. 2020, 110, 485–501. [Google Scholar] [CrossRef]
- Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.; Stoica, I. A view of cloud computing. Commun. ACM 2010, 53, 50–58. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, X.; Wang, Y.; Zhang, Q. Edge Computing: State-of-the-Art and Future Directions. J. Comput. Res. Develop. 2019, 56, 69–89. [Google Scholar]
- Satyanarayanan, M. The emergence of edge computing. Computer 2017, 50, 30–39. [Google Scholar] [CrossRef]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Kong, J.; Jue, J.P. All one needs to know about fog computing and related edge computing paradigms: A complete survey. J. Syst. Architect. 2019, 98, 289–330. [Google Scholar] [CrossRef]
- Botta, A.; De Donato, W.; Persico, V.; Pescapé, A. Integration of cloud computing and internet of things: A survey. Futur. Gener. Comp. Syst. 2016, 56, 684–700. [Google Scholar] [CrossRef]
- Qu, T.; Zhang, K.; Luo, H.; Wang, Z.; Jia, D.; Chen, X.; Huang, G.Q.; Li, X. Internet-of-things based dynamic synchronization of production and logistics: Mechanism, System and Case Study. Chin. J. Mech. Eng. 2015, 51, 36–44. [Google Scholar] [CrossRef]
- Qu, T.; Lei, S.P.; Wang, Z.Z.; Nie, D.X.; Chen, X.; Huang, G.Q. IoT-based real-time production logistics synchronization system under smart cloud manufacturing. Int. J. Adv. Manuf. Technol. 2016, 84, 147–164. [Google Scholar] [CrossRef]
- Luo, H.; Wang, K.; Kong, X.T.R.; Lu, S.; Qu, T. Synchronized production and logistics via ubiquitous computing technology. Robot. Comput.-Integr. Manuf. 2017, 45, 99–115. [Google Scholar] [CrossRef]
- Noroozi, A.; Mazdeh, M.M.; Heydari, M.; Barzoki, M.R. Coordinating order acceptance and integrated production-distribution scheduling with batch delivery considering Third Party Logistics distribution. J. Manuf. Syst. 2018, 46, 29–45. [Google Scholar] [CrossRef]
- Pan, Y.H.; Qu, T.; Wu, N.Q.; Qu, T.; Li, P.Z.; Zhang, K.; Guo, H.F. Digital Twin Based Real-time Production Logistics Synchronization System in a Multi-level Computing Architecture. J. Manuf. Syst. 2020, 58, 246–260. [Google Scholar] [CrossRef]
- Ghiani, G.; Manni, A.; Manni, E.; Moretto, V. Optimizing a waste collection system with solid waste transfer stations. Comput. Ind. Eng. 2021, 161, 107618. [Google Scholar] [CrossRef]
- Qu, T.; Zhang, K.; Li, C. Synchronized Decision-making and Control Method for Opti-state Execution of Dynamic Production Systems with Internet of Things. Chin. J. Mech. Eng. 2018, 54, 24–33. [Google Scholar] [CrossRef]
Stages of Dynamic Generation | Dynamics | The Responses | Dynamics Classification |
---|---|---|---|
The waste storage at the collection point | Some of the bins at the collection point are full | Close the door of the full bin | First-synchronization |
The bins at the collection point are all full | Call the collection vehicle priority to pick up | Second-synchronization | |
The bins at the collection point are all full | Collection vehicles are out of reach and external bins are brought in to replace full ones at the collection point | Third-synchronization | |
The recycling waste pick-up of collection vehicles | Traffic jams | Wait or reroute | First-synchronization |
Collection vehicle breakdown (with a spare vehicle to call) | Call the spare vehicle | Second-synchronization | |
Collection vehicle breakdown (no spare vehicle to call) | Rental of external vehicles | Third-synchronization | |
The waste transfer | Some of the garbage transfer containers are full | Close container door | First-synchronization |
All the garbage transfer containers are full | Call the transfer truck to transfer, or call the collection vehicle to temporarily not enter the station | Second-synchronization | |
All the garbage transfer containers are full | Rental of external transfer containers | Third-synchronization | |
The waste transit | Traffic jams | Wait or reroute | First-synchronization |
Transit truck breakdown (the fleet has idle truck calls) | Contact collection vehicles to unload at a less loaded transfer station | Second-synchronization | |
Transit truck breakdown (the fleet has no idle truck calls) | Rental of external trucks | Third-synchronization |
Item | Year | Change (%) | |
---|---|---|---|
2020 | 2021 | ||
Daily collection weight per vehicle (taking kitchen waste collection as an example) | 6 tons | 18 tons | Increase by 200% |
Total number of collection vehicle shifts per month | 520 shifts | 436 shifts | Decrease by 16.15% |
Total cost of waste collection per year | 6.24 million | 5.232 million | Decrease by 16.15% |
Annual operating costs of the transfer station | 2.7 million | 2 million | Decrease by 25.93% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, M.; Qu, T.; Huang, M.; Qiu, X.; Huang, G.Q.; Zhu, J.; Chen, J. Cloud-Edge-Terminal-Based Synchronized Decision-Making and Control System for Municipal Solid Waste Collection and Transportation. Mathematics 2022, 10, 3558. https://doi.org/10.3390/math10193558
Wan M, Qu T, Huang M, Qiu X, Huang GQ, Zhu J, Chen J. Cloud-Edge-Terminal-Based Synchronized Decision-Making and Control System for Municipal Solid Waste Collection and Transportation. Mathematics. 2022; 10(19):3558. https://doi.org/10.3390/math10193558
Chicago/Turabian StyleWan, Ming, Ting Qu, Manna Huang, Xiaohua Qiu, George Q. Huang, Jinfu Zhu, and Junrong Chen. 2022. "Cloud-Edge-Terminal-Based Synchronized Decision-Making and Control System for Municipal Solid Waste Collection and Transportation" Mathematics 10, no. 19: 3558. https://doi.org/10.3390/math10193558
APA StyleWan, M., Qu, T., Huang, M., Qiu, X., Huang, G. Q., Zhu, J., & Chen, J. (2022). Cloud-Edge-Terminal-Based Synchronized Decision-Making and Control System for Municipal Solid Waste Collection and Transportation. Mathematics, 10(19), 3558. https://doi.org/10.3390/math10193558