An Unchanged Basis Function and Preserving Accuracy Crank–Nicolson Finite Element Reduced-Dimension Method for Symmetric Tempered Fractional Diffusion Equation
Abstract
:1. Introduction
2. Retrospect the CNFE Method for STFDE and Rewrite Matrix-Form
2.1. Retrospect the CNFE Method for STFDE
2.2. Rewrite the CNFE Functional Form into Matrix Form
3. The RDRCNFE Method for STFDE
3.1. Structure of POD Basic Vectors
3.2. Construction of RDRCNFE Method
3.3. Stability and Error Estimations of the RDRCNFE Solutions
4. Some Numerical Simulations
5. Conclusions and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, H. A high-order numerical algorithm for two-dimensional time-space tempered fractional diffusion-wave equation. Appl. Numer. Math. 2019, 135, 30–46. [Google Scholar] [CrossRef]
- Du, R.; Yan, Y.; Liang, Z. A high-order scheme to approximate the Caputo fractional derivative and its application to solve the fractional diffusion wave equation. J. Comput. Phys. 2019, 376, 1312–1330. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.; Wen, L. Numerical analysis and fast implementation of a fourth-order difference scheme for two-dimensional space-fractional diffusion equations. Appl. Math. Comput. 2019, 346, 155–166. [Google Scholar] [CrossRef]
- Luo, Z.D.; Chen, G. Proper Orthogonal Decomposition Methods for Partial Differential Equations; Academic Press of Elsevier: San Diego, CA, USA, 2018. [Google Scholar]
- Tian, W.; Zhou, H.; Deng, W. A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 2015, 294, 1703–1727. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Tian, W.; Deng, W. Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 2013, 56, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.D.; Wang, H. A highly efficient reduced-order extrapolated finite difference algorithm for time-space tempered fractional diffusion-wave equation. Appl. Math. Lett. 2020, 102, 106090. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, Z. An optimized Crank–Nicolson finite difference extrapolating model for the fractional-order parabolic-type sine-Gordon equations. Adv. Differ. Equ. 2019, 2019, 1. [Google Scholar] [CrossRef] [Green Version]
- Çelik, C.; Duman, M. Finite element method for a symmetric tempered fractional diffusion equation. Appl. Numer. Math. 2017, 120, 270–286. [Google Scholar] [CrossRef]
- Alekseev, A.K.; Bistrian, D.A.; Bondarev, A.E.; Navon, I.M. On linear and nonlinear aspects of dynamic mode decomposition. Int. J. Numer. Meth. Fluids 2016, 82, 348–371. [Google Scholar] [CrossRef]
- Deng, Q.X.; Luo, Z.D. A reduced-order extrapolated finite difference iterative scheme for uniform transmission line equation. Appl. Numer. Math. 2022, 172, 514–524. [Google Scholar] [CrossRef]
- Du, J.; Navon, I.M.; Zhu, J.; Fang, F.; Alekseev, A.K. Reduced order modeling based on POD of a parabolized Navier-Stokes equations model II Trust region POD 4D VAR data assimilation. Comput. Math. Appl. 2013, 65, 380–394. [Google Scholar] [CrossRef]
- Li, H.R.; Song, Z.Y. A reduced-order energy-stability-preserving finite difference iterative scheme based on POD for the Allen-Cahn equation. J. Math. Anal. Appl. 2020, 491, 124245. [Google Scholar] [CrossRef]
- Li, H.R.; Song, Z.Y. A reduced-order finite element method based on proper orthogonal decomposition for the Allen-Cahn model. J. Math. Anal. Appl. 2021, 500, 125103. [Google Scholar] [CrossRef]
- Chaturantabut, S.; Sorensen, D.C. A state space error estimate for POD-DEIM nonlinear model reduction. SIAM J. Numer. Anal. 2012, 50, 46–63. [Google Scholar] [CrossRef]
- Sirovich, L. Turbulence and the dynamics of coherent structures part I–III. Quart. Appl. Math. 1987, 45, 561–590. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.Y.; Li, H.R. Numerical simulation of the temperature field of the stadium building foundation in frozen areas based on the finite element method and proper orthogonal decomposition technique. Math. Method Appl. Sci. 2021, 44, 8528–8542. [Google Scholar] [CrossRef]
- Zhu, S.; Dede, L.; Quarteroni, A. Isogeometric analysis and proper orthogonal decomposition for parabolic problems. Numer. Math. 2017, 135, 333–370. [Google Scholar] [CrossRef]
- Kunisch, K.; Volkwein, S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamischs. SIAM J. Numer. Anal. 2002, 40, 492–515. [Google Scholar] [CrossRef]
- Li, K.; Huang, T.Z.; Li, L.; Lanteri, S.; Xu, L.; Li, B. A qreduced-order discontinuous Galerkin method based on POD for electromagnetic simulation. IEEE Trans. Antennas Propag. 2018, 66, 242–254. [Google Scholar] [CrossRef]
- Hinze, M.; Kunkel, M. Residual based sampling in POD model order reduction of drift-diffusion equations in parametrized electrical networks. J. Appl. Math. Mech. 2012, 92, 91–104. [Google Scholar] [CrossRef]
- Stefanescu, R.; Navon, I.M. POD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations model. J. Comput. Phys. 2013, 237, 95–114. [Google Scholar] [CrossRef] [Green Version]
- Zokagoa, J.M.; Soulaǐmani, A. A POD-based reduced-order model for free surface shallow water flows over real bathymetries for Monte-Carlo-type applications. Comput Methods Appl. Mech. Eng. 2012, 221–222, 1–23. [Google Scholar] [CrossRef]
- Baiges, J.; Codina, R.; Idelsohn, S. Explicit reduced-order models for the stabilized finite element approximation of the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 2013, 72, 1219–1243. [Google Scholar] [CrossRef]
- Benner, P.; Cohen, A.; Ohlberger, M.; Willcox, A.K. Model Rduction and Approximation Theory and Algorithm; Computational Science & Engineering, SIAM: Philadelphia, PA, USA, 2017. [Google Scholar]
- Quarteroni, A.; Manzoni, A.; Negri, F. Reduced Basis Methods for Partial Differential Equations; Springer International Publishing: Manila, Philippines, 2016. [Google Scholar]
- Luo, Z.D. The reduced-order extrapolating method about the Crank–Nicolson finite element solution coefficient vectors for parabolic type equation. Mathematics 2020, 8, 1261. [Google Scholar] [CrossRef]
- Luo, Z.D.; Jiang, W.R. A reduced-order extrapolated technique about the unknown coefficient vectors of solutions in the finite element method for hyperbolic type equation. Appl. Numer. Math. 2020, 158, 123–133. [Google Scholar] [CrossRef]
- Zeng, Y.H.; Luo, Z.D. The reduced-dimension technique for the unknown solution coefficient vectors in the Crank–Nicolson finite element method for the Sobolev equation. J. Math. Anal. Appl. 2022, 513, 126207. [Google Scholar] [CrossRef]
- Luo, Z.D. The dimensionality reduction of Crank–Nicolson mixed finite element solution coefficient vectors for the unsteady Stokes equation. Mathematics 2022, 10, 2273. [Google Scholar] [CrossRef]
- Luo, Z.D. A finite element reduced-dimension method for viscoelastic wave equation. Mathematics 2022, 10, 3066. [Google Scholar] [CrossRef]
- Zhang, G.; Lin, Y. Notes on Functional Analysis; Peking University Press: Beijing, China, 1987. (In Chinese) [Google Scholar]
- Zhang, W.S. Finite Difference Methods for Patial Differential Equations in Science Computation; Higher Education Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
CNFE Method | RDRCNFE Method | ||||
---|---|---|---|---|---|
θ | γ | CPU Runtime | CPU Runtime | ||
1.1 | 0.5 | 1.010356 × 10−6 | 43.568 S | 4.150523 × 10−6 | 1.623 S |
1.0 | 1.012083 × 10−6 | 43.865 S | 4.250732 × 10−6 | 1.665 S | |
2.0 | 1.125338 × 10−6 | 43.914 S | 5.071732 × 10−6 | 1.673 S | |
1.5 | 0.5 | 1.315376 × 10−6 | 43.931 S | 4.352762 × 10−6 | 1.692 S |
1.0 | 1.414376 × 10−6 | 43.982 S | 4.651718 × 10−6 | 1.713 S | |
2.0 | 1.534283 × 10−6 | 44.173 S | 5.052123 × 10−6 | 1.721 S | |
1.9 | 0.5 | 1.541232 × 10−6 | 43.842 S | 4.356431 × 10−6 | 1.676 S |
1.0 | 1.562183 × 10−6 | 43.874 S | 4.672762 × 10−6 | 1.813 S | |
2.0 | 1.612386 × 10−6 | 44.187 S | 5.131753 × 10−6 | 1.925 S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Luo, Z. An Unchanged Basis Function and Preserving Accuracy Crank–Nicolson Finite Element Reduced-Dimension Method for Symmetric Tempered Fractional Diffusion Equation. Mathematics 2022, 10, 3630. https://doi.org/10.3390/math10193630
Yang X, Luo Z. An Unchanged Basis Function and Preserving Accuracy Crank–Nicolson Finite Element Reduced-Dimension Method for Symmetric Tempered Fractional Diffusion Equation. Mathematics. 2022; 10(19):3630. https://doi.org/10.3390/math10193630
Chicago/Turabian StyleYang, Xiaoyong, and Zhendong Luo. 2022. "An Unchanged Basis Function and Preserving Accuracy Crank–Nicolson Finite Element Reduced-Dimension Method for Symmetric Tempered Fractional Diffusion Equation" Mathematics 10, no. 19: 3630. https://doi.org/10.3390/math10193630
APA StyleYang, X., & Luo, Z. (2022). An Unchanged Basis Function and Preserving Accuracy Crank–Nicolson Finite Element Reduced-Dimension Method for Symmetric Tempered Fractional Diffusion Equation. Mathematics, 10(19), 3630. https://doi.org/10.3390/math10193630