Asymptotic Behavior of Three Connected Stochastic Delay Neoclassical Growth Systems Using Spectral Technique
Abstract
:1. Introduction
2. Model Description
3. Description of the Method
4. Preliminary Results
5. Main Results
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.; Wang, W. Global exponential stability for a delay differential neoclassical growth model. Adv. Differ. Equ. 2014, 2014, 325. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, A.; Szidarovszky, F. Delay differential neoclassical growth model. J. Econ. Behav. Organ. 2011, 78, 272–289. [Google Scholar] [CrossRef]
- Shaikhet, L. Stability of equilibriums of stochastically perturbed delay differential neoclassical growth model. Discret. Contin. Dyn. Syst.-B 2017, 22, 1565–1573. [Google Scholar] [CrossRef] [Green Version]
- Berezansky, L.; Braverman, E.; Idels, L. Nicholson’s blowflies differential equations revisited: Main results and open problems. Appl. Math. Model. 2010, 34, 1405–1417. [Google Scholar] [CrossRef]
- Bradul, N.; Shaikhet, L. Stability of the positive point of equilibrium of Nicholson’s blowflies equation with stochastic perturbations: Numerical analysis. Discret. Dyn. Nat. Soc. 2007, 2007, 092959. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, B.; Li, Y. Dependence of stability of Nicholson’s blowflies equation with maturation stage on parameters. J. Appl. Anal. Comput. 2017, 7, 670–680. [Google Scholar]
- Shaikhet, L. Stability of equilibrium states of a nonlinear delay differential equation with stochastic perturbations. Int. J. Robust Nonlinear Control 2017, 27, 915–924. [Google Scholar] [CrossRef]
- Day, R. The emergence of chaos from classical economic growth. Q. J. Econ. 1983, 98, 203–213. [Google Scholar] [CrossRef]
- Day, R. Irregular growth cycles. Am. Econ. Rev. 1982, 72, 406–414. [Google Scholar]
- Bacar, N.; Khaladi, M. On the basic reproduction number in a random environment. J. Math. Biol. 2013, 67, 1729–1739. [Google Scholar] [CrossRef] [Green Version]
- Bacar, N.; Ed-Darraz, A. On linear birth-and-death processes in a random environment. J. Math. Biol. 2014, 69, 7390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, A.; Szidarovszky, F. Asymptotic Behavior of a Delay Differential Neoclassical Growth Model. Sustainability 2013, 5, 440–455. [Google Scholar] [CrossRef]
- Day, R. Complex Economic Dynamics: An Introduction to Dynamical Systems and Market Mechanism; MIT Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Puu, T. Attractions, Bifurcations and Chaos: Nonlinear Phenomena in Economics, 2nd ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2003. [Google Scholar]
- Bischi, G.-I.; Chiarella, C.; Kopel, M.; Szidarovszky, F. Nonlinear Oligopolies; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Hunt, B.R.; Kennedy, J.A.; Li, T.Y.; Nusse, H.E. (Eds.) The Theory of Chaotic Attractors; Springer Science and Business Media: New York, NY, USA, 2013. [Google Scholar]
- Rosser, J.B. Complexity in Economics: The International Library of Critical Writings in Economics; Edward Elgar Publishing: Aldergate, UK, 2004; p. 174. [Google Scholar]
- Swan, T.W. Economic growth and capital accumulation. Econ. Rec. 1956, 32, 334–361. [Google Scholar] [CrossRef]
- Solow, R.M. A contribution to the theory of economic growth. Q. J. Econ. 1956, 70, 65–94. [Google Scholar] [CrossRef]
- Gul, N.; Khan, S.U.; Ali, I.; Khan, F.U. Transmission dynamic of stochastic hepatitis C model by spectral collocation method. Comput. Methods Biomech. Biomed. Eng. 2022, 25, 578–592. [Google Scholar] [CrossRef]
- Ali, A.; Khan, S.U.; Ali, I.; Khan, F.U. On dynamics of stochastic avian influenza model with asymptomatic carrier using spectral method. Math. Methods Appl. Sci. 2022, 45, 8230–8246. [Google Scholar] [CrossRef]
- Khan, S.U.; Ali, I. Application of Legendre spectral-collocation method to delay differential and stochastic delay differential equation. AIP Adv. 2018, 8, 035301. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.U.; Ali, M.; Ali, I. A spectral collocation method for stochastic Volterra integro-differential equations and its error analysis. J. Adv. Differ. Equ. 2019, 1, 161. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.U.; Ali, I. Numerical analysis of stochastic SIR model by Legendre spectral collocation method. Adv. Mech. Eng. 2019, 11, 1687814019862918. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Khan, S.U. Analysis of stochastic delayed SIRS model with exponential birth and saturated incidence rate. Chaos Solitons Fractals 2020, 138, 110008. [Google Scholar] [CrossRef]
- Khan, S.U.; Ali, I. Convergence and error analysis of a spectral collocation method for solving system of nonlinear Fredholm integral equations of second kind. Comput. Appl. Math. 2019, 38, 125. [Google Scholar] [CrossRef]
- Khan, S.U.; Ali, I. Applications of Legendre spectral collocation method for solving system of time delay differential equations. Adv. Mech. Eng. 2020, 12, 1687814020922113. [Google Scholar] [CrossRef]
- Wang, W.; Chen, W. Stochastic delay differential neoclassical growth system. Stoch. Model. 2021, 37, 415–425. [Google Scholar] [CrossRef]
- Keeling, M.J.; Rohani, P. Modeling Infectious Diseases in Human and Animals; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Long, Z.; Wang, W. Positive pseudo almost periodic solutions for a delayed differential neoclassical growth model. J. Differ. Equ. Appl. 2016, 22, 1893–1905. [Google Scholar] [CrossRef]
- Duan, L.; Huang, C. Existence and global attractivity of almost periodic solutions for a delayed differential neoclassical growth model. Math. Methods Appl. Sci. 2017, 40, 814–822. [Google Scholar] [CrossRef]
- Shaikhet, L. Stability of the Zero and Positive Equilibria of Two Connected Neoclassical Growth Models under Stochastic Perturbations. Commun. Nonlinear Sci. Numer. Simul. 2019, 68, 86–93. [Google Scholar] [CrossRef]
- Ali, I.; Khan, S.U. Threshold of Stochastic SIRS Epidemic Model from Infectious to Susceptible Class with Saturated Incidence Rate Using Spectral Method. Symmetry 2022, 14, 1838. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.-M.; Wang, J.-L. Intermittent Control to Stabilization of Stochastic Highly Non-Linear Coupled Systems With Multiple Time Delays. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–13. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y. Bipartite leader-following synchronization of fractional-order delayed multilayer signed networks by adaptive and impulsive controllers. Appl. Math. Comput. 2022, 430, 127243. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Z.; Zhou, H. Periodic self-triggered intermittent control with impulse for synchronization of hybrid delayed multi-links systems. IEEE Trans. Netw. Sci. Eng. 2022, 1–13. [Google Scholar] [CrossRef]
- Zhai, Y.; Wang, P.; Su, H. Stabilization of stochastic complex networks with delays based on completely aperiodically intermittent control. Nonlinear Anal. Hybrid Syst. 2021, 42, 101074. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, K.; Ren, Y.; Zhuang, Y. Stochastic Nicholson’s blowflies delay differential equation with regime switching. Appl. Math. Lett. 2019, 94, 187–195. [Google Scholar] [CrossRef]
- Mao, X.R. Stochastic Differential Equations and Their Applications; Horwood Publ. House: Chichester, UK, 1997. [Google Scholar]
- Yang, G. Dynamical behaviors on a delay differential neoclassical growth model with patch structure. Math. Methods Appl. Sci. 2018, 41, 3856–3867. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, I.; Khan, S.U. Asymptotic Behavior of Three Connected Stochastic Delay Neoclassical Growth Systems Using Spectral Technique. Mathematics 2022, 10, 3639. https://doi.org/10.3390/math10193639
Ali I, Khan SU. Asymptotic Behavior of Three Connected Stochastic Delay Neoclassical Growth Systems Using Spectral Technique. Mathematics. 2022; 10(19):3639. https://doi.org/10.3390/math10193639
Chicago/Turabian StyleAli, Ishtiaq, and Sami Ullah Khan. 2022. "Asymptotic Behavior of Three Connected Stochastic Delay Neoclassical Growth Systems Using Spectral Technique" Mathematics 10, no. 19: 3639. https://doi.org/10.3390/math10193639
APA StyleAli, I., & Khan, S. U. (2022). Asymptotic Behavior of Three Connected Stochastic Delay Neoclassical Growth Systems Using Spectral Technique. Mathematics, 10(19), 3639. https://doi.org/10.3390/math10193639