Approaches to Efficiency Assessing of Regional Knowledge-Intensive Services Sector Development Using Data Envelopment Analysis
Abstract
:1. Introduction
- -
- methodological approaches to the analysis of the dynamics of knowledge-intensive services were defined and assessment tools developed on the basis of DEA models;
- -
- relevant indicators were sampled to estimate input and output variables characterizing the development of knowledge-intensive services in Russian regions;
- -
- the calculation of quantitative performance indicators based on the Malmquist productivity index was carried out to evaluate the dynamics of knowledge-intensive services over two periods; and
- -
- the analysis of modeling results was conducted to determine best practices and directions of balanced development of knowledge-intensive services in Russian regions.
2. Theoretical Framework and Literature Review
3. Methodology
3.1. Data
- ICT investment, ths rub.—volume of investments in fixed assets aimed at the acquisition of ICT in the region; and
- ICT personnel, %—share of people employed in the ICT sector in the total employed population in the region.
- R&D finance in GRP, %—share of internal expenditures on research and development in GRP;
- R&D personnel—number of personnel engaged in research and development, pers. per 10,000 employed in the regional economy;
- Innovative activity, %—share of organizations, implementing technological, organizational, and marketing innovations in the total number of surveyed organizations in the region; and
- Registered patents, 100 unit—registered and issued patents as a result of intellectual activity.
- HEI finance, mln rub.—amount of funding for educational institutions of higher education; and
- HEI graduates, ths pers.—number of bachelors, specialists, and masters who graduated from higher education institutions, pers.
- Used of advanced technologies, ths units—number of used advanced production technologies in the region;
- Innovative goods in GRP, %—share of innovative goods, works, and services in the total volume of goods shipped, works performed, services rendered; and
- Use of intellectual property, 100 units—used patents as intellectual property.
3.2. Materials and Methods
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tödtling, F.; Lehner, P.; Trippl, M. Innovation in knowledge intensive industries: The nature and geography of knowledge links. Eur. Plan. Stud. 2006, 14, 1035–1058. [Google Scholar] [CrossRef]
- Machlup, F. The Production and Distribution of Knowledge in the United States; Princeton University Press: Princeton, NJ, USA, 1962. [Google Scholar]
- OECD. The Knowledge-Based Economy, Science Technology Industry; OECD: Paris, France, 1996. [Google Scholar]
- Giddens, A. Europe in the Global Age; Polity Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Wegrzyn, G. Service Sector as a Stimulus of Knowledge-Based Economy Development. Transform. Bus. Econ. 2010, 9, 362–381. [Google Scholar]
- Harrington, J.W.; Daniels, P.W. Knowledge-Based Services, Internationalization and Regional Development, 1st ed.; Routledge: London, UK, 2006. [Google Scholar]
- Aslesen, H.W.; Isaksen, A. New perspectives on knowledge-intensive services and innovation. Geogr. Ann. Ser. B Hum. Geogr. 2007, 89, 45–58. [Google Scholar] [CrossRef]
- Kijek, T.; Matras-Bolibok, A. Knowledge-intensive Specialisation and Total Factor Productivity (TFP) in the EU Regional Scope. Acta Univ. Agric. Et Silvic. Mendel. Brun. 2020, 68, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Fan, Z.P.; Feng, B. The Concept, Characteristics and Model of Knowledge-intensive Services. Inf. Sci. 2007, 10. Available online: https://en.cnki.com.cn/Article_en/CJFDTotal-QBKX200710031.htm (accessed on 28 November 2021).
- Santos-Vijande, M.L.; González-Mieres, C.; Ángel López-Sánchez, J. An assessment of innovativeness in KIBS: Implications on KIBS’ co-creation culture, innovation capability, and performance. J. Bus. Ind. Mark. 2013, 28, 86–102. [Google Scholar] [CrossRef]
- Yeh, S.; Ramirez, R. Service Innovation for Knowledge Intensive Services in the Digital Age: A Framework, Twenty-third Americas Conference on Information Systems. In Proceedings of the AMCIS 2017 Proceedings Strategic and Competitive Use of Information Technology, Boston, MA, USA, 10–12 August 2017. [Google Scholar]
- European Monitoring Centre on Change (EMCC). Sector Futures. The Knowledge-Intensive Business Services Sector; EMCC: Dublin, Ireland, 2005; Available online: http://www.proglocode.unam.mx/system/files/european%20foundation_2005.pdf (accessed on 10 October 2021).
- Balaz, V. Knowledge intensive services and knowledge-based economy in small European economies. Ekon. Časopis 2005, 53, 511–526. [Google Scholar]
- Shaposhnikov, V.A. Market of intellectual services: Essence and dialectics of formation. Pract. Mark. 2010, 12, 3–12. [Google Scholar]
- Schnabl, E.; Zenker, A. Statistical Classification of Knowledge-Intensive Business Services (KIBS) with NACE Rev. 2 (evoREG Research Note No. 25); Fraunhofer Institute for Systems and Innovation Research: Karlsruhe, Germany, 25 June 2013; 11p, Available online: http://www.evoreg.eu/docs/files/shno/ResearchNote_25_classificationKIBS_SCE_AZ_9_jb.pdf (accessed on 10 October 2021).
- Gibbons, M.; Limoges, C.; Nowotny, H.; Schwartzman, S.; Scott, P.; Trow, M. The New Production of Knowledge. In The Dynamics of Science and Research in Contemporary Societies; Sage: London, UK, 1994. [Google Scholar]
- Amara, N.; Landry, R.; Doloreux, D. Patterns of innovation in knowledge-intensive business services. Serv. Ind. J. 2009, 29, 407–430. [Google Scholar] [CrossRef]
- Wood, P. The regional significance of knowledge-intensive services in Europe. Innov. Eur. J. Soc. Sci. Res. 2006, 19, 51–66. [Google Scholar] [CrossRef]
- Miles, I.; Kastrinos, N.; Flanagan, K.; Bilderbeek, R.; Hertog, B.; Huntink, W.; Bouman, M. Users, Carriers and Sources of Innovation. In European Innovation Monitoring System (EIMS); EIMS Publication; European Commission: Brussels, Belgium, 1995; No. 15. [Google Scholar]
- Aarikka–Stenroos, L.; Jaakkola, E. Value co-creation in knowledge intensive business services: A dyadic perspective on the joint problem solving process. Ind. Mark. Manag. 2012, 41, 15–26. [Google Scholar] [CrossRef]
- Fisher, A.G.B. Production, primary, secondary and tertiary. Econ. Rec. 1939, 15, 24–38. [Google Scholar] [CrossRef]
- Clark, C. The Conditions of Economic Progress; Macmillan: London, France, 1940. [Google Scholar]
- Fourastié, J. Le Grand Espoir du XXe siècle; Presses Universitaires de France: Paris, France, 1949. [Google Scholar]
- Nelson, R.R.; Phelps, E.S. Investment in Humans, Technological Diffusion, and Economic Growth. Am. Econ. Rev. 1966, 2, 69–75. [Google Scholar]
- Stuart, T.A. Intellectual Capital. In A New Source of Wealth Organizations; Generation: Moscow, Russia, 2007. [Google Scholar]
- Miles, I.; Kastrinos, N.; Flanagan, K.; Bilderbeek, R.; den Hertog, P. Knowledge-Intensive Business Services. Users, Carriers and Sources of Innovation; PREST: Manchester, UK, 1995. [Google Scholar]
- Muller, E.; Doloreux, D. What we should know about knowledge-intensive business services. Technol. Soc. 2009, 31, 64–72. [Google Scholar] [CrossRef]
- Muller, E.; Zenker, A. Business Services as Actors of Knowledge Transformation: The Role of KIBS in Regional and National Innovation Systems. Res. Policy 2001, 30, 1501–1516. [Google Scholar] [CrossRef]
- Zieba, M. Knowledge-Intensive Business Services (KIBS) and Their Role in the Knowledge-Based Economy; GUT FME Working Paper Series A, No. 7/2013 (7); Gda’nsk University of Technology: Gda´nsk, Poland, 2013; Available online: http://hdl.handle.net/10419/173303 (accessed on 10 October 2021).
- Asikainen, A.-L. Innovation modes and strategies in knowledge intensive business services. Serv. Bus. 2015, 9, 77–95. [Google Scholar] [CrossRef]
- Dobrai, K.; Farkas, F. Knowledge-Intensive Business Services: A Brief Overview. Perspect. Innov. Econ. Bus. 2009, 3, 15–17. [Google Scholar] [CrossRef]
- Miles, I. From knowledge-intensive services to knowledge-intensive service systems. Int. J. Serv. Technol. Manag. 2011, 16, 141–159. [Google Scholar] [CrossRef]
- Freel, M. Knowledge-Intensive Business Services users and uses: Exploring the propensity to innovation-related cooperation with Knowledge-Intensive Business Services. In Knowledge-Intensive Business Services; Doloreux, D., Freel, M., Shearmur, R., Burlington, V.T., Eds.; Ashgate Publishing: Farnham, UK, 2010; pp. 75–98. [Google Scholar]
- Kukk, J.; Leppiman, A. The construct of value in knowledge-intensive business service from customer’s perspective. An example of a long-term training activity. Agron. Res. 2016, 14, 91–108. [Google Scholar]
- Plakhin, A.E.; Tkachenko, I.N.; Kompaneets, M.V.; Mihajlovskij, P.V. Mapping of industrial innovations of the fifth technological mode within the framework of industrial park structures of the Sverdlovsk region. IOP Conf. Ser. Mater. Sci. Eng. 2019, 564, 1012082. [Google Scholar] [CrossRef]
- Simchenko, N.A.; Apatova, N.V.; Korolev, O.L. System analysis of digital economy virtualization processes. Perspekt. Nauk. I Obraz.–Perspect. Sci. Educ. 2021, 50, 23–39. [Google Scholar] [CrossRef]
- Windrum, P.; Tomlinson, M. Knowledge-Intensive Services and International Competitiveness: A Four Country Comparison. Technol. Anal. Strateg. Manag. 1999, 11, 391–408. [Google Scholar] [CrossRef] [Green Version]
- Doroshenko, M.; Miles, I.; Vinogradov, D. Knowledge Intensive Business Services: The Russian Experience. Foresight-Russ. 2014, 8, 24–39. [Google Scholar]
- Zabrodin, A.Y. Intellectual Services in Business; Economics: Moscow, Russia, 2008; p. 635. [Google Scholar]
- OECD. Innovation and Knowledge-Intensive Service Activities; OECD: Paris, France, 2006. [Google Scholar]
- Ogurtsova, E.V.; Tugusheva, R.R.; Firsova, A.A. Innovation spillover effects of information and communications technology in higher education. Perspekt. Nauk. I Obraz.–Perspect. Sci. Educ. 2019, 42, 409–421. [Google Scholar]
- Tone, K. Advances in DEA Theory and Applications: With Extensions to Forecasting Models; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Coelli, T.; Rao, D.S.P.; Battese, G.E. An Introduction to Efficiency and Productivity Analysis, 2nd ed.; Springer: New York, NY, USA, 2005. [Google Scholar]
- Thanassoulis, E. Introduction to the Theory and Application of Data Envelopment Analysis: A Foundation Text with Integrated Software; Kluwer Academic Publishers: Boston, MA, USA, 2001. [Google Scholar]
- Cooper, W.; Seiford, L.; Zhu, J. Data Envelopment Analysis: History, Models, and Interpretations. In Handbook on Data Envelopment Analysis; International Series in Operations Research & Management Science; Springer: New York, NY, USA, 2011; pp. 1–39. [Google Scholar]
- Didenko, A.; Loseva, O.V.; Abdikeev, N. Measuring Efficiency of Regional Innovation System with DEA and PCA. In Proceedings of the 2017 IEEE 11thInternationalConference on Application of Information and Communication Technologies (AICT), Moscow, Russia, 20–22 September 2017. [Google Scholar]
- Capello, R.; Caragliu, A.; Lenzi, C. Is innovation in cities a matter of knowledge-intensive services? An empirical investigation, Innovation. Eur. J. Soc. Sci. Res. 2012, 25, 151–174. [Google Scholar] [CrossRef]
- Firsova, A.; Chernyshova, G. 2020 Efficiency Analysis of Regional Innovation Development Based on DEA Malmquist Index Information. Information 2020, 11, 294. [Google Scholar] [CrossRef]
- Camacho, J.A.; Rodríguez, M. Knowledge intensive services and R&D diffusion: An input-output approach. In Knowledge-Based Services, Internationalization and Regional Development; Routledge: England, UK, 2017; pp. 41–59. [Google Scholar]
- Firsova, A.; Chernyshova, G. Analysis of efficiency of regional innovation systems taking into account the financing structure. In Proceedings of the International Scientific Conference “Competitive, Sustainable and Secure Development of the Regional Economy: Response to Global Challenges” (CSSDRE 2018), Volgograd, Russia, 18–20 April 2018; pp. 417–422. [Google Scholar]
- Firsova, A.A.; Chernyshova, G.Y. Mathematical Models for Evaluation of the Higher Education System Functions with DEA Approach. Izv. Saratov Univ. New Ser. Math. Mech. Inform. 2019, 19, 351–362. [Google Scholar] [CrossRef]
- Ratner, S.; Lychev, A.; Rozhnov, A.; Lobanov, I. Efficiency Evaluation of Regional Environmental Management Systems in Russia Using Data Envelopment Analysis. Mathematics 2021, 9, 2210. [Google Scholar] [CrossRef]
- Afzal, M.N.I.; Lawrey, R. Evaluating the comparative performance of technical and scale efciencies in knowledge-based economies (KBEs) in ASEAN: A data envelopment analysis (DEA) application. Eur. J. Econ. Financ. Adm. Sci. 2012, 51, 81–95. [Google Scholar]
- Gavurová, B.; Haláskova, M.; Korony, S. Research and Development Indicators of EU28 Countries from Viewpoint of Super-efficiency DEA Analysis. Acta Univ. Agric. et Silvic. Mendel. Brun. 2019, 67, 225–242. [Google Scholar] [CrossRef] [Green Version]
- Hudec, O.; Prochádzková, M. The Relative Efficiency of Knowledge Innovation Processes in EU Countries. Stud. Reg. Sci. 2013, 43, 145–162. [Google Scholar] [CrossRef]
- Preobrazhenskiy, Y.V.; Firsova, A.A. Enhancing the knowledge spillover through the formation of the oligocentric national innovation system. Indones. J. Geogr. 2020, 52, 368–373. [Google Scholar] [CrossRef]
- Campisi, D.; Mancuso, P.; Mastrodonato, S.L.; Morea, D. Efficiency assessment of knowledge intensive business services industry in Italy: Data envelopment analysis (DEA) and financial ratio analysis. Meas. Bus. Excell. 2019, 23, 484–495. [Google Scholar] [CrossRef]
- Chen, W.; Jing, R.; Xu, R.; Lin, C.; Feng, Z. DEA-Malmquist index approach for the technological innovation efficiency of China’s highly patent-intensive industry. Harbin Gongcheng Daxue Xuebao J. Harbin Eng. Univ. 2017, 38, 489–494. [Google Scholar]
- Sharma, S.; Thomas, V.J. Inter-country R&D efficiency analysis: An application of data envelopment analysis. Scientometrics 2007, 76, 483–501. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Färe, R.; Grosskopf, S.; Lovell, C.A.K. Production Frontier; Cambridge University Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Shepherd, R.W. Theory of Cost and Production Frontiers; Princeton University Press: New Jersey, NJ, USA, 1970. [Google Scholar]
- Farrell, M.J. The Measurement of Productive Efficiency. J. R. Stat. Soc. Ser. A 1957, 120, 253–290. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Norris, M.; Zhang, Z. Productivity growth, technical progress and efficiency change in industrialized countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Färe, R.; Grosskopf, S.; Norris, M. Productivity growth, technical progress and efficiency change in industrialized countries: Reply. Am. Econ. Rev. 1997, 87, 1040–1044. [Google Scholar]
- Federal State Statistics Service. Regions of Russia. Socio-Economic Indicators–2020. The Russian Federal Service of State Statistics. Available online: https://gks.ru/bgd/regl/b20_14p/Main.htm (accessed on 10 October 2021).
- Brenner, T.; Capasso, M.; Duschl, M.; Frenken, K.; Treibich, T. Causal relations between knowledge-intensive business services and regional employment growth. Reg. Stud. 2018, 52, 172–183. [Google Scholar] [CrossRef] [Green Version]
- Pauceanu, A.M. Impact of knowledge intensive businesses services on the economic performance of sectors and regions in the UE. Afr. Dev. Resour. Res. Inst. J. Ghana West Afr. 2015, 8, 2343–6891. [Google Scholar]
- Satzger, G.; Schulteß, P.; Neus, A. Knowledge Intensive Services Procurement Strategy; Karlsruhe Service Research Institute: Karlsruhe, Germany, 2009. [Google Scholar]
- Ilyina, I.E.; Zharova, E.N.; Agamirova, E.V.; Kamenskiy, A.S. Innovative Development of the Regions of Russia. Regionology 2018, 26, 230–255. [Google Scholar] [CrossRef]
Variables | Mean | Median | Standard Deviation | Min | Max |
---|---|---|---|---|---|
Used of advanced technologies, ths units | 3.412 | 2.263 | 3.483 | 0.086 | 20.649 |
Innovative goods in GRP, % | 6.557 | 5.300 | 5.592 | 0.000 | 27.500 |
Used of intellectual property, 100 units | 4.799 | 2.235 | 8.328 | 0.040 | 79.770 |
ICT investment, ths rub. | 3.600 | 1.668 | 7.306 | 0.140 | 76.783 |
ICT personnel in total employed population, % | 1.528 | 1.401 | 0.560 | 0.556 | 3.261 |
R&D finance in GRP, % | 0.879 | 0.540 | 1.005 | 0.030 | 6.700 |
R&D personnel, pers. per 10,000 employed | 30.672 | 19.081 | 35.449 | 2.000 | 211.977 |
Registered patents, 100 units | 4.939 | 2.050 | 13.617 | 0.030 | 114.810 |
Innovative activity, % | 9.356 | 8.500 | 3.937 | 2.100 | 24.500 |
HEI finance, mln rub. | 9.780 | 3.858 | 24.453 | 0.419 | 223.937 |
HEI graduates, ths pers. | 18.792 | 10.825 | 30.647 | 0.716 | 271.927 |
Region | 2014–2017 | Region | 2017–2020 | ||||
---|---|---|---|---|---|---|---|
PE | SE | MI | PE | SE | MI | ||
Krasnodar Region | 1.000 | 1.204 | 1.853 | Kaliningrad Region | 1.146 | 2.357 | 4.465 |
Orenburg Region | 1.502 | 1.265 | 1.750 | Altai Republic | 1.000 | 1.061 | 3.977 |
Altai Republic | 1.000 | 1.867 | 1.724 | Murmansk Region | 1.296 | 1.569 | 2.725 |
Belgorod Region | 1.190 | 1.591 | 1.518 | Ivanovo Region | 1.111 | 1.867 | 2.673 |
Kemerovo Region | 1.000 | 1.155 | 1.452 | Astrakhan Region | 1.098 | 1.724 | 2.629 |
Kaluga Region | 0.981 | 1.122 | 1.402 | Tomsk Region | 1.468 | 1.489 | 2.575 |
Arkhangelsk Region | 1.040 | 1.234 | 1.349 | Republic of Karelia | 1.000 | 1.574 | 2.455 |
Vladimir Region | 1.030 | 1.019 | 1.333 | Omsk Region | 1.401 | 1.318 | 2.371 |
Stavropol Region | 1.013 | 1.377 | 1.329 | Altai Region | 1.088 | 1.634 | 2.356 |
Irkutsk Region | 1.006 | 1.262 | 1.320 | Republic of Khakassia | 1.000 | 1.000 | 2.108 |
Tyumen Region | 1.000 | 1.000 | 1.290 | Komi Republic | 0.911 | 1.243 | 2.101 |
Khabarovsk Region | 1.491 | 1.012 | 1.272 | Republic of Sakha (Yakutia) | 1.231 | 1.039 | 2.019 |
Saratov Region | 1.000 | 1.000 | 1.245 | Primorsky Krai | 1.379 | 0.874 | 1.914 |
Republic of Karelia | 1.191 | 0.953 | 1.232 | Stavropol Region | 1.000 | 1.000 | 1.900 |
Chelyabinsk Region | 1.047 | 1.035 | 1.219 | Novosibirsk Region | 1.062 | 1.075 | 1.682 |
Kurgan Region | 1.149 | 1.099 | 1.218 | St. Petersburg | 1.324 | 1.026 | 1.647 |
Kostroma Region | 1.000 | 1.021 | 1.205 | Smolensk Region | 1.060 | 1.231 | 1.631 |
Republic of Bashkortostan | 1.000 | 1.000 | 1.184 | Leningrad Region | 1.000 | 1.000 | 1.579 |
Republic of Sakha (Yakutia) | 0.892 | 1.300 | 1.175 | Kaluga Region | 1.046 | 0.979 | 1.548 |
Republic of Khakassia | 1.000 | 1.000 | 1.173 | Amurskaya Oblast | 0.820 | 1.306 | 1.502 |
Smolensk Region | 0.943 | 1.285 | 1.171 | Perm Region | 1.000 | 1.000 | 1.471 |
Volgograd Region | 0.892 | 1.115 | 1.162 | Bryansk Region | 1.065 | 1.273 | 1.458 |
Samara Region | 1.000 | 1.084 | 1.159 | Sverdlovsk Region | 1.000 | 1.000 | 1.437 |
Sverdlovsk Region | 1.000 | 1.000 | 1.143 | Nizhny Novgorod Region | 1.000 | 1.000 | 1.414 |
Moscow city | 1.000 | 1.000 | 1.139 | Pskov Region | 1.000 | 1.085 | 1.376 |
Ulyanovsk Region | 1.204 | 1.286 | 1.113 | Republic of Buryatia | 0.765 | 1.490 | 1.333 |
Zabaykalsky Krai | 1.000 | 1.000 | 1.105 | Republic of Udmurtia | 1.000 | 1.000 | 1.332 |
Republic of Tatarstan | 1.000 | 1.000 | 1.102 | Ulyanovsk Region | 1.000 | 1.000 | 1.330 |
Bryansk Region | 1.235 | 1.207 | 1.100 | Chelyabinsk Region | 0.918 | 0.997 | 1.327 |
Perm Region | 1.000 | 1.000 | 1.014 | Krasnoyarsk Region | 0.872 | 1.012 | 1.324 |
St. Petersburg | 0.983 | 0.977 | 1.006 | Tver Region | 1.000 | 0.994 | 1.317 |
Ryazan Oblast | 1.000 | 1.019 | 0.997 | Orenburg Region | 1.000 | 1.634 | 1.297 |
Kirov Region | 1.000 | 1.072 | 0.993 | Kirov Region | 1.000 | 1.111 | 1.276 |
Novosibirsk Region | 0.682 | 1.316 | 0.989 | Oryol Region | 0.810 | 1.159 | 1.226 |
Mari El Republic | 1.000 | 1.000 | 0.982 | Kurgan Region | 0.990 | 1.105 | 1.181 |
Leningrad Region | 1.000 | 1.000 | 0.964 | Kursk Region | 1.054 | 1.000 | 1.175 |
Primorsky Krai | 0.612 | 1.336 | 0.943 | Belgorod Region | 1.175 | 1.044 | 1.160 |
Tver Region | 1.000 | 1.000 | 0.928 | Moscow Region | 1.000 | 1.000 | 1.150 |
Tula Region | 1.000 | 1.000 | 0.915 | Voronezh Region | 0.874 | 1.201 | 1.144 |
Rostov Region | 0.801 | 1.252 | 0.910 | Tyumen Region | 1.000 | 1.000 | 1.137 |
Penza Region | 1.000 | 1.222 | 0.901 | Novgorod Region | 1.000 | 0.869 | 1.122 |
Omsk Region | 0.815 | 0.950 | 0.896 | Vladimir Region | 1.000 | 1.000 | 1.085 |
Yaroslavskaya Oblast | 1.000 | 0.986 | 0.889 | Tula Region | 1.000 | 1.000 | 1.059 |
Komi Republic | 1.000 | 0.801 | 0.876 | Tambov Region | 0.871 | 1.039 | 1.051 |
Republic of Mordovia | 1.000 | 1.000 | 0.855 | Samara Region | 1.000 | 1.000 | 1.035 |
Novgorod Region | 1.000 | 1.000 | 0.850 | Penza Region | 0.907 | 0.986 | 1.017 |
Kursk Region | 0.921 | 1.168 | 0.845 | Rostov Region | 1.062 | 0.958 | 0.997 |
Tomsk Region | 0.934 | 1.018 | 0.832 | Zabaykalsky Krai | 1.000 | 0.929 | 0.996 |
Nizhny Novgorod Region | 1.000 | 1.000 | 0.828 | Republic of Mordovia | 1.000 | 1.000 | 0.980 |
Voronezh Region | 0.916 | 1.139 | 0.810 | Chuvash Republic | 1.000 | 1.000 | 0.967 |
Vologodskaya Oblast | 1.000 | 1.000 | 0.791 | Vologodskaya Oblast | 1.000 | 0.958 | 0.950 |
Tambov Region | 1.003 | 0.886 | 0.791 | Kemerovo Region | 1.000 | 1.000 | 0.946 |
Oryol Region | 1.306 | 0.683 | 0.781 | Irkutsk Region | 0.862 | 0.684 | 0.930 |
Murmansk Region | 0.836 | 0.886 | 0.780 | Ryazan Oblast | 0.891 | 0.985 | 0.927 |
Pskov Region | 1.000 | 0.817 | 0.774 | Republic of Bashkortostan | 1.000 | 0.934 | 0.908 |
Ivanovo Region | 0.908 | 0.936 | 0.764 | Republic of Tatarstan | 1.000 | 1.000 | 0.859 |
Kaliningrad Region | 0.863 | 0.755 | 0.753 | Volgograd Region | 1.124 | 0.669 | 0.850 |
Moscow Region | 1.000 | 1.000 | 0.751 | Saratov Region | 0.828 | 0.808 | 0.828 |
Republic of Udmurtia | 1.000 | 1.000 | 0.748 | Lipetsk Region | 1.000 | 1.000 | 0.820 |
Altai Region | 0.919 | 0.762 | 0.714 | Khabarovsk Region | 1.000 | 1.000 | 0.794 |
Amurskaya Oblast | 0.940 | 0.836 | 0.707 | Kostroma Region | 1.000 | 1.000 | 0.753 |
Krasnoyarsk Region | 0.775 | 0.752 | 0.666 | Krasnodar Region | 0.967 | 0.964 | 0.714 |
Chuvash Republic | 1.000 | 1.000 | 0.639 | Yaroslavskaya Region | 0.690 | 0.835 | 0.695 |
Lipetsk Region | 1.000 | 1.000 | 0.598 | Arkhangelsk Region | 1.000 | 0.865 | 0.668 |
Astrakhan Region | 1.071 | 0.537 | 0.571 | Mari El Republic | 1.000 | 0.994 | 0.598 |
Republic of Buryatia | 1.001 | 0.297 | 0.292 | Moscow city | 0.473 | 0.942 | 0.351 |
Period | 2014–2017 | 2017–2020 |
---|---|---|
MI ≥1 | 46.97% | 69.70% |
MI <1 | 53.03% | 30.30% |
Region | Region No. | EC | TC | PE | SE | MI |
---|---|---|---|---|---|---|
Moscow Region | 52 | 1.408 | 1.860 | 1.000 | 1.408 | 2.619 |
Altai Region | 23 | 1.327 | 1.382 | 0.995 | 1.334 | 1.834 |
Kursk Region | 19 | 1.337 | 1.301 | 1.091 | 1.225 | 1.739 |
Chelyabinsk Region | 33 | 1.181 | 1.345 | 1.006 | 1.173 | 1.589 |
Republic of Udmurtia | 53 | 1.000 | 1.572 | 1.000 | 1.000 | 1.572 |
Republic of Tatarstan | 62 | 1.218 | 1.265 | 1.048 | 1.162 | 1.540 |
Sverdlovsk Region | 43 | 1.762 | 0.855 | 1.225 | 1.438 | 1.507 |
Republic of Khakassia | 6 | 1.062 | 1.387 | 1.013 | 1.048 | 1.473 |
Khabarovsk Region | 60 | 1.441 | 1.016 | 1.171 | 1.231 | 1.464 |
Voronezh Region | 25 | 1.227 | 1.188 | 1.041 | 1.179 | 1.458 |
Yaroslavskaya oblast | 59 | 1.196 | 1.218 | 1.069 | 1.119 | 1.457 |
Republic of Sakha (Yakutia) | 5 | 1.328 | 1.076 | 1.005 | 1.322 | 1.429 |
Republic of Karelia | 13 | 1.258 | 1.099 | 1.000 | 1.258 | 1.382 |
Republic of Buryatia | 20 | 0.952 | 1.424 | 0.955 | 0.998 | 1.356 |
Republic of Mordovia | 64 | 0.993 | 1.353 | 0.919 | 1.081 | 1.343 |
Orenburg Region | 1 | 1.524 | 0.871 | 1.183 | 1.288 | 1.327 |
Krasnoyarsk Region | 54 | 1.116 | 1.162 | 1.000 | 1.116 | 1.297 |
Tver Region | 58 | 1.012 | 1.274 | 0.851 | 1.189 | 1.290 |
Ulyanovsk Region | 28 | 1.142 | 1.126 | 1.141 | 1.002 | 1.287 |
Penza Region | 49 | 1.000 | 1.281 | 1.000 | 1.000 | 1.281 |
Mari El Republic | 51 | 0.996 | 1.277 | 0.980 | 1.016 | 1.272 |
Ivanovo Region | 2 | 1.422 | 0.890 | 1.147 | 1.240 | 1.266 |
Kaluga Region | 24 | 1.000 | 1.234 | 1.000 | 1.000 | 1.234 |
Kemerovo Region | 30 | 1.043 | 1.175 | 1.084 | 0.962 | 1.226 |
Vologodskaya Oblast | 40 | 1000 | 1.221 | 1000 | 1.000 | 1.221 |
Kostroma Region | 47 | 1.244 | 0.978 | 1.097 | 1.134 | 1.217 |
Perm Region | 50 | 1000 | 1.211 | 1.000 | 1.000 | 1.211 |
Astrakhan Region | 3 | 1.024 | 1.174 | 1.015 | 1.009 | 1.203 |
Republic of Bashkortostan | 48 | 1.176 | 1.020 | 1.067 | 1.102 | 1.199 |
Nizhny Novgorod Region | 57 | 1.075 | 1.091 | 1.000 | 1.075 | 1.172 |
Arkhangelsk Region | 29 | 1.059 | 1.086 | 0.983 | 1.077 | 1.150 |
Tambov Region | 41 | 1.092 | 1.031 | 1.000 | 1.092 | 1.126 |
Novgorod Region | 56 | 0.866 | 1.279 | 0.932 | 0.929 | 1.108 |
Primorsky Krai | 15 | 0.997 | 1.109 | 1.000 | 0.997 | 1.106 |
Novosibirsk Region | 45 | 1.041 | 1.052 | 1.000 | 1.041 | 1.095 |
Krasnodar Region | 42 | 1.000 | 1.082 | 1.000 | 1.000 | 1.082 |
Ryazan Oblast | 63 | 0.964 | 1.088 | 1.000 | 0.964 | 1.049 |
Leningrad Region | 34 | 0.967 | 1.072 | 1.000 | 0.967 | 1.037 |
Tyumen Region | 27 | 0.941 | 1.096 | 1.000 | 0.941 | 1.032 |
Moscow city | 66 | 0.918 | 1.123 | 0.878 | 1.045 | 1.030 |
St. Petersburg | 46 | 0.818 | 1.241 | 0.910 | 0.899 | 1.015 |
Chuvash Republic | 65 | 1.228 | 0.819 | 1.221 | 1.006 | 1.005 |
Kirov Region | 38 | 1.000 | 0.998 | 1.000 | 1.000 | 0.998 |
Kurgan Region | 8 | 1.065 | 0.936 | 0.985 | 1.081 | 0.997 |
Rostov Region | 31 | 0.865 | 1.149 | 1.001 | 0.864 | 0.994 |
Smolensk Region | 16 | 1.000 | 0.985 | 1.000 | 1.000 | 0.985 |
Kaliningrad Region | 11 | 0.915 | 1.069 | 1.028 | 0.890 | 0.978 |
Irkutsk Region | 26 | 0.932 | 1.047 | 1.000 | 0.932 | 0.976 |
Pskov Region | 37 | 1.000 | 0.973 | 1.000 | 1.000 | 0.973 |
Altai Republic | 4 | 1.047 | 0.919 | 0.895 | 1.170 | 0.962 |
Bryansk Region | 12 | 0.946 | 1.016 | 0.944 | 1.002 | 0.961 |
Samara Region | 44 | 1.045 | 0.916 | 0.952 | 1.098 | 0.957 |
Saratov Region | 32 | 1.010 | 0.943 | 0.922 | 1.095 | 0.953 |
Amurskaya Oblast | 7 | 1.010 | 0.943 | 1.000 | 1.010 | 0.952 |
Omsk Region | 21 | 1.054 | 0.901 | 1.020 | 1.033 | 0.949 |
Tula Region | 55 | 0.717 | 1.310 | 0.822 | 0.872 | 0.939 |
Murmansk Region | 10 | 1.000 | 0.929 | 1.000 | 1.000 | 0.929 |
Oryol Region | 36 | 1.000 | 0.916 | 1.000 | 1.000 | 0.916 |
Tomsk Region | 14 | 0.896 | 1.017 | 0.935 | 0.959 | 0.912 |
Komi Republic | 22 | 0.979 | 0.886 | 1.000 | 0.979 | 0.867 |
Belgorod Region | 17 | 0.754 | 1.042 | 0.831 | 0.907 | 0.786 |
Vladimir Region | 39 | 1.000 | 0.786 | 1.000 | 1.000 | 0.786 |
Zabaykalsky Krai | 35 | 0.997 | 0.769 | 1.000 | 0.997 | 0.767 |
Volgograd Region | 9 | 1.000 | 0.700 | 1.000 | 1.000 | 0.700 |
Stavropol Region | 18 | 0.667 | 0.948 | 0.688 | 0.971 | 0.633 |
Lipetsk Region | 61 | 0.583 | 1.071 | 0.875 | 0.666 | 0.624 |
Period | EC | TC | PE | SE | MI |
---|---|---|---|---|---|
2014–2017 | 1.009 | 0.976 | 0.992 | 1.017 | 0.985 |
2017–2020 | 1.074 | 1.202 | 0.998 | 1.076 | 1.290 |
Geometric means | 1.041 | 1.083 | 0.995 | 1.046 | 1.127 |
2014–2020 | 1.084 | 1.169 | 0.990 | 1.095 | 1.267 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Firsova, A.; Chernyshova, G.; Tugusheva, R. Approaches to Efficiency Assessing of Regional Knowledge-Intensive Services Sector Development Using Data Envelopment Analysis. Mathematics 2022, 10, 173. https://doi.org/10.3390/math10020173
Firsova A, Chernyshova G, Tugusheva R. Approaches to Efficiency Assessing of Regional Knowledge-Intensive Services Sector Development Using Data Envelopment Analysis. Mathematics. 2022; 10(2):173. https://doi.org/10.3390/math10020173
Chicago/Turabian StyleFirsova, Anna, Galina Chernyshova, and Ryasimya Tugusheva. 2022. "Approaches to Efficiency Assessing of Regional Knowledge-Intensive Services Sector Development Using Data Envelopment Analysis" Mathematics 10, no. 2: 173. https://doi.org/10.3390/math10020173
APA StyleFirsova, A., Chernyshova, G., & Tugusheva, R. (2022). Approaches to Efficiency Assessing of Regional Knowledge-Intensive Services Sector Development Using Data Envelopment Analysis. Mathematics, 10(2), 173. https://doi.org/10.3390/math10020173