Next Article in Journal
Forecasting the Hydrogen Demand in China: A System Dynamics Approach
Next Article in Special Issue
Hermite-Hadamard-Type Fractional Inclusions for Interval-Valued Preinvex Functions
Previous Article in Journal
Consensus Control of Leaderless and Leader-Following Coupled PDE-ODEs Modeled Multi-Agent Systems
Previous Article in Special Issue
Optimality Conditions and Duality for a Class of Generalized Convex Interval-Valued Optimization Problems
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Riemann–Liouville Fractional Integral Inequalities for Generalized Pre-Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation

by
Muhammad Bilal Khan
1,
Hatim Ghazi Zaini
2,
Savin Treanțǎ
3,
Mohamed S. Soliman
4 and
Kamsing Nonlaopon
5,*
1
Department of Mathematics, COMSATS University Islamabad, Islamabad 45550, Pakistan
2
Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
3
Department of Applied Mathematics, University Politehnica of Bucharest, 060042 Bucharest, Romania
4
Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
5
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
*
Author to whom correspondence should be addressed.
Mathematics 2022, 10(2), 204; https://doi.org/10.3390/math10020204
Submission received: 7 December 2021 / Revised: 28 December 2021 / Accepted: 7 January 2022 / Published: 10 January 2022
(This article belongs to the Special Issue Variational Problems and Applications)

Abstract

:
The concepts of convex and non-convex functions play a key role in the study of optimization. So, with the help of these ideas, some inequalities can also be established. Moreover, the principles of convexity and symmetry are inextricably linked. In the last two years, convexity and symmetry have emerged as a new field due to considerable association. In this paper, we study a new version of interval-valued functions (I-V·Fs), known as left and right χ -pre-invex interval-valued functions (LR- χ -pre-invex I-V·Fs). For this class of non-convex I-V·Fs, we derive numerous new dynamic inequalities interval Riemann–Liouville fractional integral operators. The applications of these repercussions are taken into account in a unique way. In addition, instructive instances are provided to aid our conclusions. Meanwhile, we’ll discuss a few specific examples that may be extrapolated from our primary findings.

1. Introduction

The Hermite–Hadamard inequality (see [1,2], p. 137) is a well-known inequality in convex function theory, with a geometrical explanation and a wide range of applications. Hermite–Hadamard inequality (H-H inequality) is a development of the concept of convexity, and it logically follows from Jensen’s inequality. In recent years, the H-H inequality for convex functions has sparked a lot of attention, and several refinements and extensions have been investigated; see [3,4,5,6,7,8,9,10,11,12,13,14] and the references therein.
On the other hand, interval analysis is a subset of set-valued analysis and is concerned with the study of intervals in the context of mathematical analysis and topology. It was developed as a means of dealing with interval uncertainty, which is included in many mathematical or computer models of deterministic real-world systems. A historical example of an interval enclosure is Archimedes’ method for calculating the circumference of a circle. In 1966, Moore [15] released the first book on interval analysis. Moore is recognized as being the first usage of intervals in computer mathematics. Following the release of his book, a lot of scientists began to study interval arithmetic’s theory and applications. Because of its universality, interval analysis is currently a useful approach in a range of sectors that are interested in ambiguous data. Moreover, interval analysis has also applications in different fields like in error analysis, computer graphics, error analysis, experimental and computational physics, and many more.
Numerous significant inequalities for I-V·Fs (Hermite–Hadamard, Ostrowski, etc.) have been investigated in recent years. In [16,17], Chalco–Cano et al. constructed Ostrowski type inequalities for I-V·Fs using the Hukuhara derivative for I-V·Fs. Román-Flores et al. developed Minkowski and Beckenbach’s inequality for I-V·Fs in [18]. For more information, see [18,19,20,21,22] and the references therein. Moreover, inequalities can be examined for the more general set-valued mappings for example, Sadowska [23] introduced the H-H inequality general set-valued mappings. Similarly, for generalized inequalities, we refer to the following articles, see [24,25] and the references therein. Recently, Khan et al. extended the interval H-H inequalities in terms of fuzzy interval H-H inequalities using fuzzy Riemannian and fuzzy Riemann–Liouville fractional integral operators such as in [26]. Khan et al. also presented the new class of convex fuzzy mappings known as ( χ 1 ,   χ 2 ) -convex fuzzy-interval-valued functions ( ( χ 1 ,   χ 2 ) -convex F-I-V·F) and obtained the new version of H-H inequalities for ( χ 1 ,   χ 2 ) -convex F-I-V·Fs. Moreover, Khan et al. introduced new notions of generalized convex F-I-V·Fs, and derived new fractional H-H type and H-H type inequalities for convex F-I-V·Fs [27,28,29,30,31,32]. For more analysis and applications of F-I-V·Fs, see [33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50] and the references therein.
This study is organized as follows: Section 2 presents preliminary and new concepts and results in interval space, and convex analysis. Section 3 obtains interval H-H inequalities and H-H Fejér inequalities for LR- χ -pre-invex I-V·Fs via interval Riemann–Liouville fractional integral operators. In addition, some interesting examples are also given to verify our results. Section 4 gives conclusions and future plans.

2. Preliminaries

Let K C stand for the collection of all closed and bounded intervals of . We use K C + to represent the set of all positive intervals. The collections of all Riemann integrable real valued functions and Riemann integrable I-V-F are denoted by [ μ , ω ] and [ μ , ω ] , respectively. For more conceptions on I-V·Fs, see [36]. Moreover, we have:
Remark 1.
[35] (i) The relation p defined on K C by:
[ U * ,   U * ] p [ Z * ,   Z * ]   if   and   only   if   U * Z * ,     U * Z * ,
for all  [ U * ,   U * ] ,   [ Z * ,   Z * ] K C ,  it is a pseudo-order relation. For given  [ U * ,   U * ] ,   [ Z * ,   Z * ] K C ,  we say that  [ U * ,   U * ] p [ Z * ,   Z * ]  if and only if  U * Z * ,   U * Z *  or  U * Z * ,   U * < Z * . The relation  [ U * ,   U * ] p [ Z * ,   Z * ]  coincident to  [ U * ,   U * ] [ Z * ,   Z * ]  on  K C .
(ii) It can be easily seen that   p  looks like “left and right” on the real line  ,  so we call  p   “left and right” (or “LR” order, in short).
The concept of the Riemann integral for I-V-F first introduced by Moore [15] is defined as follows:
Theorem 1.
[15] If S : [ μ , ω ] K C is an I-V·F on [ μ , ω ] such that S ( x ) = [ S * ( x ) ,   S * ( x ) ] , then S is Riemann integrable over [ μ , ω ] if and only if, S * ( x ) and S * ( x ) both are Riemann integrable over [ μ , ω ] such that:
( I R ) μ ω S ( x ) d x = [ ( R ) μ ω S * ( x ) d x ,   ( R ) μ ω S * ( x ) d x ]
Lupulescuand Budak et al. [36,37] introduced the following interval RiemannLiouville fractional integral operators:
Let α > 0 and L ( [ μ ,   ω ] , K C + ) be the collection of all Lebesgue measurableI-V-Fs on   [ μ , ω ] . Then the interval left and right RiemannLiouville fractional integrals of S   L ( [ μ ,   ω ] , K C + ) with order α > 0 are defined by:
μ + α   S ( x ) = 1 Γ ( α ) μ x ( x ς ) α 1 S ( ς ) d ς ,         ( x > μ ) ,
and:
ω α   S ( x ) = 1 Γ ( α ) x ω ( ς x ) α 1 S ( ς ) d ς ,         ( x < ω )
respectively, where  Γ ( x ) = 0 ς x 1 e ς d ς  is the Euler gamma function.
Definition 1.
[34] A real-valued function  S : [ μ ,   ω ] +  is named as convex function if:
S ( ς x + ( 1 ς ) z ) ς S ( x ) + ( 1 ς ) S ( z ) ,
for all  x ,   z [ μ ,   ω ] ,   ς [ 0 ,   1 ] If (5) is reversed, then S is named as concave.
Definition 2.
[40A real valued function  S : [ μ ,   ω ] +  is named as pre-invex function if:
S ( x + ( 1 ς ) φ ( z , x ) ) ς S ( x ) + ( 1 ς ) S ( z ) ,
for all  x ,   z [ μ ,   ω ] ,   ς [ 0 ,   1 ] , where φ : [ μ , ω ] × [ μ , ω ] . If (6) is reversed, then  S   is named as pre-incave.
Definition 3.
[35] The I-V·F S : [ μ ,   ω ] K C + is named as LR-convex I-V·F on   [ μ ,   ω ] if:
S ( ς x + ( 1 ς ) z ) p ς S ( x ) + ( 1 ς ) S ( z ) ,
for all   x ,   z [ μ ,   ω ] ,   ς [ 0 ,   1 ] . If (7) is reversed, then S is named as LR-concave I-V·F on [ μ ,   ω ] . S is affine, if and only if it is both LR-convex and LR-concave I-V·F.
Definition 4.
[41] The I-V·F S : [ μ ,   ω ] K C + is named as LR-pre-invex I-V·F on invex interval [ μ ,   ω ] if:
S ( x + ( 1 ς ) φ ( z , x ) ) p ς S ( x ) + ( 1 ς ) S ( z ) ,
for all   x ,   z [ μ ,   ω ] ,   ς [ 0 ,   1 ] , where φ : [ μ , ω ] × [ μ , ω ] . If (8) is reversed then, S is named as LR-pre-incave I-V·F on [ μ ,   ω ] . S is a LR-affine if and only if, it is both LR-pre-invex and LR-pre-incave I-V·Fs.
Definition 5.
Let χ   : [ 0 ,   1 ] [ μ , ω ] + such that χ 0 . Then, I-V·F S : [ μ , ω ] K C + is said to be LR- χ -pre-invex I-V·F on [ μ , ω ] if:
S ( x + ( 1 ς ) φ ( x , z ) ) p χ ( ς ) S ( x ) + χ ( 1 ς ) S ( z ) ,  
for all   x ,   z [ μ , ω ] ,   ς [ 0 ,   1 ] , where φ : [ μ , ω ] × [ μ , ω ] . If  S  is LR- χ -pre-incave on  [ μ , ω ] , then inequality (9) is reversed.
Remark 2.
If χ ( ς ) = ς , then LR- χ -pre-invex I-V·F becomes LR-pre-invex I-V·F. If χ ( ς ) 1 , then LR- χ -pre-invex I-V·F becomes LR- P I-V·F, that is:
S ( x + ( 1 ς ) φ ( x , z ) ) p S ( x ) + S ( z ) ,       x ,   z [ μ , ω ] ,   ς [ 0 ,   1 ] .
Theorem 2.
Let χ : [ 0 ,   1 ] [ μ , ω ] be a non-negative real valued function such that χ 0 and let S : [ μ , ω ] K C + be a I-V·F such that:
S ( z ) = [ S * ( z ) ,   S * ( z ) ] ,  
for all  z [ μ , ω ] . Then,  S ( z )  is LR- χ -pre-invex I-V·F on  [ μ , ω ] ,  if and only if,  S * ( z )  and  S * ( z )   both are  χ -pre-invex.
Proof. 
Assume that,  S * ( x ) and S * ( x ) are χ -pre-invex on [ μ , ω ] . Then from (6), we have:
S * ( x + ( 1 ς ) φ ( x , z ) ) χ ( ς ) S * ( x ) + χ ( 1 ς ) S * ( z ) ,     x , z [ μ , ω ] ,   ς [ 0 ,   1 ] ,
and:
S * ( x + ( 1 ς ) φ ( x , z ) ) χ ( ς ) S * ( x ) + χ ( 1 ς ) S * ( z ) ,   x , z [ μ , ω ] ,   ς [ 0 ,   1 ] .
Then by (11), we obtain:
S ( x + ( 1 ς ) φ ( x , z ) ) = [ S * ( x + ( 1 ς ) φ ( x , z ) ) ,   S * ( x + ( 1 ς ) φ ( x , z ) ) ] , [ χ ( ς ) S * ( x ) ,   χ ( ς ) S * ( x ) ] + [ χ ( 1 ς ) S * ( z ) ,   χ ( 1 ς ) S * ( z ) ] ,
that is:
S ( x + ( 1 ς ) φ ( x , z ) ) p χ ( ς ) S ( x ) + χ ( 1 ς ) S ( z ) ,   x , z [ μ , ω ] ,   ς [ 0 ,   1 ] .
Hence, S is LR- χ -pre-invex IVF on [ μ , ω ] .
Conversely, let S be a LR- χ -pre-invex IVF on [ μ , ω ] . Then for all x , z [ μ , ω ] and ς [ 0 ,   1 ] , we have:
S ( x + ( 1 ς ) φ ( x , z ) ) p χ ( ς ) S ( x ) + χ ( 1 ς ) S ( z ) .
Therefore, from (11), we have:
S ( x + ( 1 ς ) φ ( x , z ) ) = [ S * ( x + ( 1 ς ) φ ( x , z ) ) ,   S * ( x + ( 1 ς ) φ ( x , z ) ) ] .
Again, from (11), we obtain:
χ ( ς ) S ( x ) + χ ( 1 ς ) S ( x ) = [ χ ( ς ) S * ( x ) ,   χ ( ς ) S * ( x ) ] + [ χ ( 1 ς ) S * ( z ) ,   χ ( 1 ς ) S * ( z ) ] ,
for all x , z [ μ , ω ] and ς [ 0 ,   1 ] . Then by LR- χ -pre-invexity of S , we have for all x , z [ μ , ω ] and ς [ 0 ,   1 ] such that:
S * ( x + ( 1 ς ) φ ( x , z ) ) χ ( ς ) S * ( x ) + χ ( 1 ς ) S * ( z ) ,
and:
S * ( x + ( 1 ς ) φ ( x , z ) ) χ ( ς ) S * ( x ) + χ ( 1 ς ) S * ( z ) ,
hence, the result follows. □
Example 1.
We consider χ ( ς ) = ς ,   for ς [ 0 ,   1 ] and the I-V·F S : [ 0 ,   4 ] K C + defined by S ( z ) = [ z , 2 e z 2   ] . Since end point functions S * ( z ) ,   S * ( z ) are χ -pre-invex functions with respect to φ ( x , z ) = x z . Hence S ( z ) is LR- χ -pre-invex I-V·F.
Remark 3.
If  χ ( ς ) ς  and  S * ( z ) = S * ( z ) , then from (8), we obtain the inequality (6).
If χ ( ς ) ς and S * ( z ) = S * ( z ) and φ ( x , z ) = x z , then from (8), we obtain the inequality (5).
We’ll need to make the following assumption about the function φ : [ μ , ω ] × [ μ , ω ] , which will be crucial in the major findings.
Condition C. [40]
φ ( x , z + ς φ ( x , z ) ) = ( 1 ς ) φ ( x , z ) ,
φ ( z , z + ς φ ( x , z ) ) = ς φ ( x , z ) .
Note that   z ,   x [ μ , ω ] and ς [ 0 ,   1 ] , then from condition C we have
φ ( z + ς 2 φ ( x , z ) , z + ς 1 φ ( x , z ) ) = ( ς 2 ς 1 ) φ ( x , z )
Clearly for ς = 0 , we have φ ( x , z ) = 0 if and only if x = z , for all z ,   x [ μ , ω ] . For the application of condition C, see [40,41].

3. Interval Fractional Hermite–Hadamard Inequalities

In this section, we will prove some new H-H type inequalities for LR- χ -pre-invex I-V·Fs via Riemann–Liouville fractional integral operators. In the next results, we will denote L ( [ μ ,   μ + φ ( ω , μ ) ] , K C + ) as the family of Lebesgue measurable I-V·Fs.
Theorem 3.
Let S : [ μ ,   μ + φ ( ω , μ ) ] K C + be a LR-𝜒-pre-invex I-V·F on [ μ ,   μ + φ ( ω , μ ) ] such that S ( z ) = [ S * ( z ) ,   S * ( z ) ] for all z [ μ ,   μ + φ ( ω , μ ) ] . If φ satisfies condition C and S L ( [ μ ,   μ + φ ( ω , μ ) ] , K C + ) , then:
1 α χ ( 1 2 ) S ( 2 μ + φ ( ω , μ ) 2 ) p Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S ( μ ) ] p ( S ( μ ) + S ( μ + φ ( ω , μ ) ) ) 0 1 ς α 1 [ χ ( ς ) χ ( 1 ς ) ] d ς p ( S ( μ ) + S ( ω ) ) 0 1 ς α 1 [ χ ( ς ) χ ( 1 ς ) ] d ς
If  S ( z )   is pre-incave I-V·F, then:
1 α χ ( 1 2 ) S ( 2 μ + φ ( ω , μ ) 2 ) p Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S ( μ ) ] p ( S ( μ ) + S ( μ + φ ( ω , μ ) ) ) 0 1 ς α 1 [ χ ( ς ) χ ( 1 ς ) ] d ς p ( S ( μ ) + S ( ω ) ) 0 1 ς α 1 [ χ ( ς ) χ ( 1 ς ) ] d ς
Proof. 
Let S : [ μ ,   μ + φ ( ω , μ ) ] K C + be a LR-𝜒-pre-invex I-V·F. If condition C holds then, by hypothesis, we have:
1 χ ( 1 2 ) S ( 2 μ + φ ( ω , μ ) 2 ) p S ( μ + ( 1 ς ) φ ( ω , μ ) ) + S ( μ + ς φ ( ω , μ ) ) .
Therefore, we have:
1 χ ( 1 2 ) S * ( 2 μ + φ ( ω , μ ) 2 ) S * ( μ + ( 1 ς ) φ ( ω , μ ) ) + S * ( μ + ς φ ( ω , μ ) ) ,     1 χ ( 1 2 ) S * ( 2 μ + φ ( ω , μ ) 2 ) S * ( μ + ( 1 ς ) φ ( ω , μ ) ) + S * ( μ + ς φ ( ω , μ ) ) .
Multiplying both sides by ς α 1 and integrating the obtained result with respect to ς over ( 0 , 1 ) , we have
1 χ ( 1 2 ) 0 1 ς α 1 S * ( 2 μ + φ ( ω , μ ) 2 ) d ς   0 1 ς α 1 S * ( μ + ( 1 ς ) φ ( ω , μ ) ) d ς + 0 1 ς α 1 S * ( μ + ς φ ( ω , μ ) ) d ς   1 χ ( 1 2 ) 0 1 ς α 1 S * ( 2 μ + φ ( ω , μ ) 2 ) d ς   0 1 ς α 1 S * ( μ + ( 1 ς ) φ ( ω , μ ) ) d ς + 0 1 ς α 1 S * ( μ + ς φ ( ω , μ ) ) d ς .  
Let x = μ + ( 1 ς ) φ ( ω , μ ) and x = μ + ς φ ( ω , μ ) . Then, we have:
1 α χ ( 1 2 ) S * ( 2 μ + φ ( ω , μ ) 2 ) 1 ( φ ( ω , μ ) ) α   μ μ + φ ( ω , μ ) ( μ + φ ( ω , μ ) x ) α 1 S * ( x ) d x + 1 ( φ ( ω , μ ) ) α μ μ + φ ( ω , μ ) ( z μ ) α 1 S * ( z ) d z 1 α χ ( 1 2 ) S * ( 2 μ + φ ( ω , μ ) 2 ) 1 ( φ ( ω , μ ) ) α   μ μ + φ ( ω , μ ) ( μ + φ ( ω , μ ) x ) α 1 S * ( x ) d x + 1 ( φ ( ω , μ ) ) α μ μ + φ ( ω , μ ) ( z μ ) α 1 S * ( z ) d z , Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S * ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * ( μ ) ]   Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S * ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * ( μ ) ] ,
that is:
1 α χ ( 1 2 ) [ S * ( 2 μ + φ ( ω , μ ) 2 ) ,   S * ( 2 μ + φ ( ω , μ ) 2 ) ]
p Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S * ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * ( μ ) ,   μ + α   S * ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * ( μ ) ]
thus,
1 α χ ( 1 2 )   S ( 2 μ + φ ( ω , μ ) 2 ) p Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S ( μ ) ] .
In a similar way as above, we have:
Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S ( μ ) ] p [ S ( μ ) + S ( μ + φ ( ω , μ ) ) ] 0 1 ς α 1 [ χ ( ς ) χ ( 1 ς ) ] d ς .
Combining (14) and (15), we have:
1 α χ ( 1 2 ) S ( 2 μ + φ ( ω , μ ) 2 ) p Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S ( μ ) ] p [ S ( μ ) + S ( μ + φ ( ω , μ ) ) ] 0 1 ς α 1 [ χ ( ς ) χ ( 1 ς ) ] d ς p [ S ( μ ) + S ( ω ) ] 0 1 ς α 1 [ χ ( ς ) χ ( 1 ς ) ] d ς
hence, the required result. □
Remark 4.
From Theorem 3 we clearly see that:
If φ ( ω , μ ) = ω μ , then from Theorem 3, we get the following new result in fractional calculus, see [42].
Q ( μ + ω 2 ) p Γ ( α + 1 ) 2 ( ω μ ) α [ μ + α   Q ( ω ) + ω α   Q ( μ ) ] p Q ( μ ) + Q ( ω ) 2
If  α = 1 , then from Theorem 3, we obtain the following results for LR-𝜒-pre-invex I-V·F, which are also new ones:
1 2 χ ( 1 2 )   S ( 2 μ + φ ( ω , μ ) 2 ) p 1 φ ( ω , μ )   ( F R ) μ μ + φ ( ω , μ ) S ( z ) d z p [ S ( μ ) + S ( μ + φ ( ω , μ ) ) ] 0 1 χ ( ς ) d ς .
If χ ( ς ) = ς , then Theorem 3 reduces to the result for LR-pre-invex I-V·F, see [41]:
S ( 2 μ + φ ( ω , μ ) 2 ) p Γ ( α + 1 ) 2 ( φ ( ω , μ ) ) α [ μ + α   S ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S ( μ ) ] p S ( μ ) + S ( μ + φ ( ω , μ ) ) 2
Let α = 1 and χ ( ς ) = ς . Then, Theorem 3 reduces to the result for LR-pre-invex-I-V·F, see [41]:
S ( 2 μ + φ ( ω , μ ) 2 ) p 1 φ ( ω , μ )   ( F R ) μ μ + φ ( ω , μ ) S ( z ) d z p S ( μ ) + S ( ω ) 2
Example 2.
α = 1 2 , χ ( ς ) = ς , for all ς [ 0 ,   1 ] and the I-V·F S : [ μ ,   μ + φ ( ω , μ ) ] = [ 2 ,   2 + φ ( 3 , 2 ) ] K C + , defined by S ( z ) = [ 1 , 2 ] ( 2 z 1 2 ) . Since left and right end-point functions S * ( z ) = ( 2 z 1 2 ) ,   S * ( z ) = 2 ( 2 z 1 2 ) , are LR- χ -pre-invex functions, then S ( z ) is LR- χ -pre-invex I-V·F. We clearly see that S L ( [ μ ,   μ + φ ( ω , μ ) ] , K C + ) and:
1 α χ ( 1 2 ) S * ( 2 μ + φ ( ω , μ ) 2 ) = S * ( 5 2 ) = 4 10 8
1 α χ ( 1 2 ) S * ( 2 μ + φ ( ω , μ ) 2 ) = S * ( 5 2 ) = 4 10 4 ,
S * ( μ ) + S * ( μ + φ ( ω , μ ) ) 2 0 1 ς α 1 [ χ ( ς ) χ ( 1 ς ) ] d ς = ( 4 2 3 )
S * ( μ ) + S * ( μ + φ ( ω , μ ) ) 2 0 1 ς α 1 [ χ ( ς ) χ ( 1 ς ) ] d ς = 2 ( 4 2 3 ) .
Note that:
Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S * ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * ( μ ) ] = Γ ( 1 2 ) 2 1 π 2 3 ( 3 z ) 1 2 · ( 2 z 1 2 ) d z + Γ ( 1 2 ) 2 1 π 2 3 ( z 2 ) 1 2 · ( 2 z 1 2 ) d z = 1 2 [ 7393 10 , 000 + 9501 10 , 000 ] = 8447 20 , 000 .
Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S * ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * ( μ ) ] Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S * ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * ( μ ) ] + Γ ( 1 2 ) 2 1 π 2 3 ( z 2 ) 1 2   ·   2 ( 2 z 1 2 ) d z = [ 7393 10 , 000 + 9501 10 , 000 ] = 8447 10 , 000 .
Therefore:
[ 4 10 8 , 4 10 4 ] p [ 8447 20 , 000 , 8447 10 , 000 ] p [ ( 4 2 3 ) , 2 ( 4 2 3 ) ]
and Theorem 3 is verified.
From Theorems 4 and 5, we obtain some interval fractional integral inequalities related to interval fractional H-H inequalities.
Theorem 4.
Let S ,   : [ μ ,   μ + φ ( ω , μ ) ] K C + be LR- χ 1 -pre-invex and LR- χ 2 -pre-invex I-V·Fs on [ μ ,   μ + φ ( ω , μ ) ] , respectively, such that S ( z ) = [ S * ( z ) ,   S * ( z ) ] and ( z ) = [ * ( z ) ,   * ( z ) ] for all z [ μ ,   μ + φ ( ω , μ ) ] . If φ satisfies condition C and S ×   L ( [ μ ,   μ + φ ( ω , μ ) ] , K C + ) , then:
Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S ( μ + φ ( ω , μ ) ) × ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α S ( μ ) × ( μ ) ] p ξ ( μ , μ + φ ( ω , μ ) ) 0 1 ς α 1 [ χ 1 ( ς ) χ 2 ( ς ) + χ 1 ( 1 ς ) χ 2 ( 1 ς ) ] d ς + ( μ , μ + φ ( ω , μ ) ) 0 1 ς α 1 [ χ 1 ( ς ) χ 2 ( 1 ς ) + χ 1 ( 1 ς ) χ 2 ( ς ) ] d ς .
where ξ ( μ , μ + φ ( ω , μ ) ) = S ( μ ) × ( μ ) + S ( μ + φ ( ω , μ ) ) × ( μ + φ ( ω , μ ) ) ,   ( μ , μ + φ ( ω , μ ) ) = S ( μ ) × ( μ + φ ( ω , μ ) ) + S ( μ + φ ( ω , μ ) ) × ( μ ) , and ξ ( μ , μ + φ ( ω , μ ) ) = [ ξ * ( ( μ , μ + φ ( ω , μ ) ) ) ,   ξ * ( ( μ , μ + φ ( ω , μ ) ) ) ] and ( μ , μ + φ ( ω , μ ) ) = [ * ( μ , μ + φ ( ω , μ ) ) ,   * ( μ , μ + φ ( ω , μ ) ) ] .
Proof. 
Since S ,    both are LR- χ 1 -pre-invex and LR- χ 2 -pre-invex I-V·F then, we have:
S * ( μ + ( 1 ς ) φ ( ω , μ ) ) = S * ( μ + φ ( ω , μ ) + ς φ ( μ , μ + φ ( ω , μ ) ) ) χ 1 ( ς ) S * ( μ ) + χ 1 ( 1 ς ) S * ( μ + φ ( ω , μ ) ) S * ( μ + ( 1 ς ) φ ( ω , μ ) ) = S * ( μ + φ ( ω , μ ) + ς φ ( μ , μ + φ ( ω , μ ) ) ) χ 1 ( ς ) S * ( μ ) + χ 1 ( 1 ς ) S * ( μ + φ ( ω , μ ) ) .
and:
* ( μ + ( 1 ς ) φ ( ω , μ ) ) = * ( μ + ( 1 ς ) φ ( ω , μ ) ) χ 2 ( ς ) * ( μ ) + χ 2 ( 1 ς ) * ( μ + φ ( ω , μ ) ) * ( μ + ( 1 ς ) φ ( ω , μ ) ) = * ( μ + ( 1 ς ) φ ( ω , μ ) ) χ 2 ( ς ) * ( μ ) + χ 2 ( 1 ς ) * ( μ + φ ( ω , μ ) ) .
From the definition of LR-𝜒-pre-invex I-V·F, we have:
S * ( μ + ( 1 ς ) φ ( ω , μ ) ) × * ( μ + ( 1 ς ) φ ( ω , μ ) ) χ 1 ( ς ) χ 2 ( ς ) S * ( μ ) × * ( μ ) + χ 1 ( 1 ς ) χ 2 ( 1 ς ) S * ( μ + φ ( ω , μ ) ) × * ( μ + φ ( ω , μ ) ) + χ 1 ( ς ) χ 2 ( 1 ς ) S * ( μ ) × * ( μ + φ ( ω , μ ) ) + χ 1 ( 1 ς ) χ 2 ( ς ) S * ( μ + φ ( ω , μ ) ) × * ( μ ) S * ( μ + ( 1 ς ) φ ( ω , μ ) ) × * ( μ + ( 1 ς ) φ ( ω , μ ) ) χ 1 ( ς ) χ 2 ( ς ) S * ( μ ) × * ( μ ) + χ 1 ( 1 ς ) χ 2 ( 1 ς ) S * ( μ + φ ( ω , μ ) ) × * ( μ + φ ( ω , μ ) ) + χ 1 ( ς ) χ 2 ( 1 ς ) S * ( μ ) × * ( μ + φ ( ω , μ ) ) + χ 1 ( 1 ς ) χ 2 ( ς ) S * ( μ + φ ( ω , μ ) ) × * ( μ ) .
Analogously, we have:
S * ( μ + ς φ ( ω , μ ) ) * ( μ + ς φ ( ω , μ ) ) χ 1 ( 1 ς ) χ 2 ( 1 ς ) S * ( μ ) × * ( μ ) + χ 1 ( ς ) χ 2 ( ς ) S * ( μ + φ ( ω , μ ) ) × * ( μ + φ ( ω , μ ) ) + χ 1 ( 1 ς ) χ 2 ( ς ) S * ( μ ) × * ( μ + φ ( ω , μ ) ) + χ 1 ( ς ) χ 2 ( 1 ς ) S * ( μ + φ ( ω , μ ) ) × * ( μ ) S * ( μ + ς φ ( ω , μ ) ) × * ( μ + ς φ ( ω , μ ) ) χ 1 ( 1 ς ) χ 2 ( 1 ς ) S * ( μ ) × * ( μ ) + χ 1 ( ς ) χ 2 ( ς ) S * ( μ + φ ( ω , μ ) ) × * ( μ + φ ( ω , μ ) ) + χ 1 ( 1 ς ) χ 2 ( ς ) S * ( μ ) × * ( μ + φ ( ω , μ ) ) + χ 1 ( ς ) χ 2 ( 1 ς ) S * ( μ + φ ( ω , μ ) ) × * ( μ ) .
Adding (21) and (22), we have:
S * ( μ + ( 1 ς ) φ ( ω , μ ) ) × * ( μ + ( 1 ς ) φ ( ω , μ ) )    + S * ( μ + ς φ ( ω , μ ) ) × * ( μ + ς φ ( ω , μ ) ) [ χ 1 ( ς ) χ 2 ( ς ) + χ 1 ( 1 ς ) χ 2 ( 1 ς ) ] [ S * ( μ ) × * ( μ ) + S * ( μ + φ ( ω , μ ) ) × * ( μ + φ ( ω , μ ) ) ]    + [ χ 1 ( ς ) χ 2 ( 1 ς ) + χ 1 ( 1 ς ) χ 2 ( ς ) ] [ S * ( μ + φ ( ω , μ ) ) × * ( μ ) + S * ( μ ) × * ( μ + φ ( ω , μ ) ) ] S * ( μ + ( 1 ς ) φ ( ω , μ ) ) × * ( μ + ( 1 ς ) φ ( ω , μ ) )    + S * ( μ + ς φ ( ω , μ ) ) × * ( μ + ς φ ( ω , μ ) ) [ χ 1 ( ς ) χ 2 ( ς ) + χ 1 ( 1 ς ) χ 2 ( 1 ς ) ] [ S * ( μ ) × * ( μ ) + S * ( μ + φ ( ω , μ ) ) × * ( μ + φ ( ω , μ ) ) ]    + [ χ 1 ( ς ) χ 2 ( 1 ς ) + χ 1 ( 1 ς ) χ 2 ( ς ) ] [ S * ( μ + φ ( ω , μ ) ) × * ( μ ) + S * ( μ ) × * ( μ + φ ( ω , μ ) ) ] .
Taking multiplication of (23) with ς α 1 and integrating the obtained result with respect to ς over (0,1), we have:
0 1 ς α 1 S * ( μ + ( 1 ς ) φ ( ω , μ ) ) × * ( μ + ( 1 ς ) φ ( ω , μ ) )    + ς α 1 S * ( μ + ς φ ( ω , μ ) ) × * ( μ + ς φ ( ω , μ ) ) d ς ξ * ( ( μ , μ + φ ( ω , μ ) ) ) 0 1 ς α 1 [ χ 1 ( ς ) χ 2 ( ς ) + χ 1 ( 1 ς ) χ 2 ( 1 ς ) ] d ς    + * ( ( μ , μ + φ ( ω , μ ) ) ) 0 1 ς α 1 [ χ 1 ( ς ) χ 2 ( 1 ς ) + χ 1 ( 1 ς ) χ 2 ( ς ) ] d ς 0 1 ς α 1 S * ( μ + ( 1 ς ) φ ( ω , μ ) ) × * ( μ + ( 1 ς ) φ ( ω , μ ) )    + ς α 1 S * ( μ + ς φ ( ω , μ ) ) × * ( μ + ς φ ( ω , μ ) ) d ς ξ * ( ( μ , μ + φ ( ω , μ ) ) ) 0 1 ς α 1 [ χ 1 ( ς ) χ 2 ( ς ) + χ 1 ( 1 ς ) χ 2 ( 1 ς ) ] d ς + * ( ( μ , μ + φ ( ω , μ ) ) ) 0 1 ς α 1 [ χ 1 ( ς ) χ 2 ( 1 ς ) + χ 1 ( 1 ς ) χ 2 ( ς ) ] d ς .
It follows that:
Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S * ( μ + φ ( ω , μ ) ) × * ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * ( μ ) × * ( μ ) ] ξ * ( ( μ , μ + φ ( ω , μ ) ) ) 0 1 ς α 1 [ χ 1 ( ς ) χ 2 ( ς ) + χ 1 ( 1 ς ) χ 2 ( 1 ς ) ] d ς + * ( ( μ , μ + φ ( ω , μ ) ) ) 0 1 ς α 1 [ χ 1 ( ς ) χ 2 ( 1 ς ) + χ 1 ( 1 ς ) χ 2 ( ς ) ] d ς Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S * ( μ + φ ( ω , μ ) ) × * ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * ( μ ) × * ( μ ) ]   ξ * ( ( μ , μ + φ ( ω , μ ) ) ) 0 1 ς α 1 [ χ 1 ( ς ) χ 2 ( ς ) + χ 1 ( 1 ς ) χ 2 ( 1 ς ) ] d ς + * ( ( μ , μ + φ ( ω , μ ) ) ) 0 1 ς α 1 [ χ 1 ( ς ) χ 2 ( 1 ς ) + χ 1 ( 1 ς ) χ 2 ( ς ) ] d ς .
It results that:
Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S * ( μ + φ ( ω , μ ) ) × * ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * ( μ ) × * ( μ ) ,     μ + α   S * ( μ + φ ( ω , μ ) ) × * ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * ( μ ) × * ( μ ) ] p [ ξ * ( ( μ , μ + φ ( ω , μ ) ) ) ,   ξ * ( ( μ , μ + φ ( ω , μ ) ) ) ] 0 1 ς α 1 [ χ 1 ( ς ) χ 2 ( ς ) + χ 1 ( 1 ς ) χ 2 ( 1 ς ) ] d ς + [ * ( ( μ , μ + φ ( ω , μ ) ) ) ,   * ( ( μ , μ + φ ( ω , μ ) ) ) ] 0 1 ς α 1 [ χ 1 ( ς ) χ 2 ( 1 ς ) + χ 1 ( 1 ς ) χ 2 ( ς ) ] d ς
that is:
Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S ( μ + φ ( ω , μ ) ) × ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α S ( μ ) × ( μ ) ] p ξ ( μ , μ + φ ( ω , μ ) ) 0 1 ς α 1 [ χ 1 ( ς ) χ 2 ( ς ) + χ 1 ( 1 ς ) χ 2 ( 1 ς ) ] d ς + ( μ , μ + φ ( ω , μ ) ) 0 1 ς α 1 [ χ 1 ( ς ) χ 2 ( 1 ς ) + χ 1 ( 1 ς ) χ 2 ( ς ) ] d ς
and the theorem has been established. □
Theorem 5.
Let S ,     : [ μ ,   μ + φ ( ω , μ ) ] K C + be two LR- χ 1 -pre-invex and LR- χ 2 -pre-invex I-V·Fs, respectively, such that S ( z ) = [ S * ( z ) ,   S * ( z ) ] and ( z ) = [ * ( z ) ,   * ( z ) ] for all z [ μ ,   μ + φ ( ω , μ ) ] . If φ satisfies condition C and S × L ( [ μ ,   μ + φ ( ω , μ ) ] , K C + ) , then:
1 α χ 1 ( 1 2 ) χ 2 ( 1 2 )   S ( 2 μ + φ ( ω , μ ) 2 ) × ( 2 μ + φ ( ω , μ ) 2 ) p Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S ( μ + φ ( ω , μ ) ) × ( ω ) + μ + φ ( ω , μ ) α   S ( μ ) × ( μ ) ] + ( μ , μ + φ ( ω , μ ) ) 0 1 [ ς α 1 + ( 1 ς ) α 1 ] χ 1 ( ς ) χ 2 ( 1 ς ) d ς + ξ ( μ , μ + φ ( ω , μ ) ) 0 1 [ ς α 1 + ( 1 ς ) α 1 ] χ 1 ( 1 ς ) χ 2 ( 1 ς ) d ς ,
where ξ ( u , u + φ ( ν , u ) ) = S ( u ) × ( u ) + S ( μ + φ ( ω , μ ) ) × ( μ + φ ( ω , μ ) ) ,   ( μ , μ + φ ( ω , μ ) ) = S ( μ ) × ( μ + φ ( ω , μ ) ) + S ( μ + φ ( ω , μ ) ) × ( μ ) , and ξ ( μ , μ + φ ( ω , μ ) ) = [ ξ * ( μ , μ + φ ( ω , μ ) ) ,   ξ * ( μ , μ + φ ( ω , μ ) ) ] and ( μ , μ + φ ( ω , μ ) ) = [ * ( ( μ , μ + φ ( ω , μ ) ) ) ,   * ( μ , μ + φ ( ω , μ ) ) ] .
Proof. 
Consider S ,   : [ μ ,   μ + φ ( ω , μ ) ] K C + . are LR- χ 1 -pre-invex and LR- χ 2 -pre-invex I-V·Fs. Then, by hypothesis, we have:
S * ( 2 μ + φ ( ω , μ ) 2   ) × * ( 2 μ + φ ( ω , μ ) 2 )   S * ( 2 μ + φ ( ω , μ ) 2 ) × * ( 2 μ + φ ( ω , μ ) 2 ) χ 1 ( 1 2 ) χ 2 ( 1 2 ) [ S * ( μ + ( 1 ς ) φ ( ω , μ ) ) × * ( μ + ( 1 ς ) φ ( ω , μ ) ) + S * ( μ + ( 1 ς ) φ ( ω , μ ) ) × * ( μ + ς φ ( ω , μ ) ) ] +   χ 1 ( 1 2 ) χ 2 ( 1 2 ) [ S * ( μ + ς φ ( ω , μ ) ) × * ( μ + ( 1 ς ) φ ( ω , μ ) ) + S * ( μ + ς φ ( ω , μ ) ) × * ( μ + ς φ ( ω , μ ) ) ] χ 1 ( 1 2 ) χ 2 ( 1 2 ) [ S * ( μ + ( 1 ς ) φ ( ω , μ ) ) × * ( μ + ( 1 ς ) φ ( ω , μ ) ) + S * ( μ + ( 1 ς ) φ ( ω , μ ) ) × * ( μ + ς φ ( ω , μ ) ) ] +   χ 1 ( 1 2 ) χ 2 ( 1 2 ) [ S * ( μ + ς φ ( ω , μ ) ) × * ( μ + ( 1 ς ) φ ( ω , μ ) ) + S * ( μ + ς φ ( ω , μ ) ) × * ( μ + ς φ ( ω , μ ) ) ] , χ 1 ( 1 2 ) χ 2 ( 1 2 ) [ S * ( μ + ( 1 ς ) φ ( ω , μ ) ) × * ( μ + ( 1 ς ) φ ( ω , μ ) ) + S * ( μ + ς φ ( ω , μ ) ) × * ( μ + ς φ ( ω , μ ) ) ] +   χ 1 ( 1 2 ) χ 2 ( 1 2 ) [ ( χ 1 ( ς ) S * ( μ ) + χ 1 ( 1 ς ) S * ( μ + φ ( ω , μ ) , ) ) × ( χ 2 ( 1 ς ) * ( μ ) + χ 2 ( ς ) * ( μ + φ ( ω , μ ) , ) ) + ( χ 1 ( 1 ς ) S * ( μ ) + χ 1 ( ς ) S * ( μ + φ ( ω , μ ) , ) ) × ( χ 2 ( ς ) * ( μ ) + χ 2 ( 1 ς ) * ( μ + φ ( ω , μ ) , ) ) ] χ 1 ( 1 2 ) χ 2 ( 1 2 ) [ S * ( μ + ( 1 ς ) φ ( ω , μ ) ) × * ( μ + ( 1 ς ) φ ( ω , μ ) ) + S * ( μ + ς φ ( ω , μ ) ) × * ( μ + ς φ ( ω , μ ) ) ] +   χ 1 ( 1 2 ) χ 2 ( 1 2 ) [ ( χ 1 ( ς ) S * ( μ ) + χ 1 ( 1 ς ) S * ( μ + φ ( ω , μ ) , ) ) × ( χ 2 ( 1 ς ) * ( μ ) + χ 2 ( ς ) * ( μ + φ ( ω , μ ) , ) ) + ( χ 1 ( 1 ς ) S * ( μ ) + χ 1 ( ς ) S * ( μ + φ ( ω , μ ) , ) ) × ( χ 2 ( ς ) * ( μ ) + χ 2 ( 1 ς ) * ( μ + φ ( ω , μ ) , ) ) ] , = χ 1 ( 1 2 ) χ 2 ( 1 2 ) [ S * ( μ + ( 1 ς ) φ ( ω , μ ) ) × * ( μ + ( 1 ς ) φ ( ω , μ ) ) + S * ( μ + ς φ ( ω , μ ) ) × * ( μ + ς φ ( ω , μ ) ) ] +   χ 1 ( 1 2 ) χ 2 ( 1 2 ) [ { χ 1 ( ς ) χ 2 ( 1 ς ) + χ 1 ( 1 ς ) χ 2 ( ς ) } * ( ( μ , μ + φ ( ω , μ ) ) ) + { χ 1 ( ς ) χ 2 ( ς ) + χ 1 ( 1 ς ) χ 2 ( 1 ς ) } ξ * ( ( μ , μ + φ ( ω , μ ) ) ) ] = χ 1 ( 1 2 ) χ 2 ( 1 2 ) [ S * ( μ + ( 1 ς ) φ ( ω , μ ) ) × * ( μ + ( 1 ς ) φ ( ω , μ ) ) + S * ( μ + ς φ ( ω , μ ) ) × * ( μ + ς φ ( ω , μ ) ) ] +   χ 1 ( 1 2 ) χ 2 ( 1 2 ) [ { χ 1 ( ς ) χ 2 ( 1 ς ) + χ 1 ( 1 ς ) χ 2 ( ς ) } * ( μ , μ + φ ( ω , μ ) ) + { χ 1 ( ς ) χ 2 ( ς ) + χ 1 ( 1 ς ) χ 2 ( 1 ς ) } ξ * ( μ , μ + φ ( ω , μ ) ) ] .
Taking multiplication of (25) with ς α 1 and integrating over ( 0 ,   1 ) , we get:
1 α χ 1 ( 1 2 ) χ 2 ( 1 2 ) S * ( 2 μ + φ ( ω , μ ) 2 ) × * ( 2 μ + φ ( ω , μ ) 2 ) Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S * ( μ + φ ( ω , μ ) ) × * ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * ( μ ) × * ( μ ) ] + * ( μ , μ + φ ( ω , μ ) ) 0 1 [ ς α 1 + ( 1 ς ) α 1 ] χ 1 ( ς ) χ 2 ( 1 ς ) d ς b + ξ * ( μ , μ + φ ( ω , μ ) ) 0 1 [ ς α 1 + ( 1 ς ) α 1 ] χ 1 ( 1 ς ) χ 2 ( 1 ς ) d ς 1 α χ 1 ( 1 2 ) χ 2 ( 1 2 ) S * ( 2 μ + φ ( ω , μ ) 2 ) × * ( 2 μ + φ ( ω , μ ) 2 ) Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S * ( μ + φ ( ω , μ ) ) × * ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * ( μ ) × * ( μ ) ] + * ( μ , μ + φ ( ω , μ ) ) 0 1 [ ς α 1 + ( 1 ς ) α 1 ] χ 1 ( ς ) χ 2 ( 1 ς ) d ς + ξ * ( μ , μ + φ ( ω , μ ) ) 0 1 [ ς α 1 + ( 1 ς ) α 1 ] χ 1 ( 1 ς ) χ 2 ( 1 ς ) d ς .
It follows that:
1 α χ 1 ( 1 2 ) χ 2 ( 1 2 )   S ( 2 μ + φ ( ω , μ ) 2 ) × ( 2 μ + φ ( ω , μ ) 2 ) p Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S ( μ + φ ( ω , μ ) ) × ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S ( μ ) × ( μ ) ] + ( μ , μ + φ ( ω , μ ) ) 0 1 [ ς α 1 + ( 1 ς ) α 1 ] χ 1 ( ς ) χ 2 ( 1 ς ) d ς + ξ ( μ , μ + φ ( ω , μ ) ) 0 1 [ ς α 1 + ( 1 ς ) α 1 ] χ 1 ( 1 ς ) χ 2 ( 1 ς ) d ς
Hence, the required result. □
Now, we present the successful reformative version of the generalized version of interval H-H inequality on invex set for LR- χ -pre-invex I-V·F via interval Riemann–Liouville fractional integral.
Theorem 6.
(Second fractionalH-HFejér inequality) Let S : [ μ ,   μ + φ ( ω , μ ) ] K C + be a LR- χ -pre-invex I-V·F with μ < μ + φ ( ω , μ ) , such that S ( z ) = [ S * ( z ) ,   S * ( z ) ] for all z [ μ ,   μ + φ ( ω , μ ) ] . If S L ( [ μ ,   μ + φ ( ω , μ ) ] , K C + ) and D : [ μ ,   μ + φ ( ω , μ ) ] ,   D ( z ) 0 , symmetric with respect to 2 μ + φ ( ω , μ ) 2 , then:
Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S D ( μ ) ] p ( S ( μ ) + S ( μ + φ ( ω , μ ) ) ) 0 1 ς α 1 [ χ ( ς ) + χ ( 1 ς ) ] D ( μ + ς φ ( ω , μ ) ) d ς .
If  S  is pre-incave I-V·F, then inequality (26) is reversed.
Proof. 
Let S be a LR- χ -pre-invex I-V·F and ς α 1 D ( μ + ( 1 ς ) φ ( ω , μ ) ) 0 . Then, we have:
ς α 1 S * ( μ + ( 1 ς ) φ ( ω , μ ) ) D ( μ + ( 1 ς ) φ ( ω , μ ) ) ς α 1 ( χ ( ς ) S * ( μ ) + χ ( 1 ς ) S * ( μ + φ ( ω , μ ) ) ) D ( μ + ( 1 ς ) φ ( ω , μ ) ) ς α 1 S * ( μ + ( 1 ς ) φ ( ω , μ ) ) D ( μ + ( 1 ς ) φ ( ω , μ ) ) ς α 1 ( χ ( ς ) S * ( μ ) + χ ( 1 ς ) S * ( μ + φ ( ω , μ ) ) ) D ( μ + ( 1 ς ) φ ( ω , μ ) ) ,
and:
ς α 1 S * ( μ + ς φ ( ω , μ ) ) D ( μ + ς φ ( ω , μ ) ) ς α 1 ( χ ( 1 ς ) S * ( μ ) + χ ( ς ) S * ( μ + φ ( ω , μ ) ) ) D ( μ + ς φ ( ω , μ ) ) ς α 1 S * ( μ + ς φ ( ω , μ ) ) D ( μ + ς φ ( ω , μ ) ) ς α 1 ( χ ( 1 ς ) S * ( μ ) + χ ( ς ) S * ( μ + φ ( ω , μ ) ) ) D ( μ + ς φ ( ω , μ ) ) .
After adding (27) and (28), and integrating over [ 0 ,   1 ] , we get:
0 1 ς α 1 S * ( μ + ( 1 ς ) φ ( ω , μ ) ) D ( μ + ( 1 ς ) φ ( ω , μ ) ) d ς + 0 1 ς α 1 S * ( μ + ς φ ( ω , μ ) ) D ( μ + ς φ ( ω , μ ) ) d ς 0 1 [ ς α 1 S * ( μ ) { χ ( ς ) D ( μ + ( 1 ς ) φ ( ω , μ ) ) + χ ( 1 ς ) D ( μ + ς φ ( ω , μ ) ) } + ς α 1 S * ( μ + φ ( ω , μ ) ) { χ ( 1 ς ) D ( μ + ( 1 ς ) φ ( ω , μ ) ) + χ ( ς ) D ( μ + ς φ ( ω , μ ) ) } ] d ς , = S * ( μ ) 0 1 ς α 1 [ χ ( ς ) + χ ( 1 ς ) ] D ( μ + ( 1 ς ) φ ( ω , μ ) ) d ς + S * ( μ + φ ( ω , μ ) ) 0 1 ς α 1 [ χ ( ς ) + χ ( 1 ς ) ] D ( μ + ς φ ( ω , μ ) ) d ς , 0 1 ς α 1 S * ( μ + ς φ ( ω , μ ) ) D ( μ + ς φ ( ω , μ ) ) d ς + 0 1 ς α 1 S * ( μ + ( 1 ς ) φ ( ω , μ ) ) D ( μ + ( 1 ς ) φ ( ω , μ ) ) d ς 0 1 [ ς α 1 S * ( μ ) { χ ( ς ) D ( μ + ( 1 ς ) φ ( ω , μ ) ) + χ ( 1 ς ) D ( μ + ς φ ( ω , μ ) ) } + ς α 1 S * ( μ + φ ( ω , μ ) ) { χ ( 1 ς ) D ( μ + ( 1 ς ) φ ( ω , μ ) ) + χ ( ς ) D ( μ + ς φ ( ω , μ ) ) } ] d ς , = S * ( μ ) 0 1 ς α 1 [ χ ( ς ) + χ ( 1 ς ) ] D ( μ + ( 1 ς ) φ ( ω , μ ) ) d ς + S * ( μ + φ ( ω , μ ) ) 0 1 ς α 1 [ χ ( ς ) + χ ( 1 ς ) ] D ( μ + ς φ ( ω , μ ) ) d ς .
Taking the right hand side of inequality (29), we have:
0 1 ς α 1 S * ( μ + ( 1 ς ) φ ( ω , μ ) ) D ( μ + ς φ ( ω , μ ) ) d ς + 0 1 ς α 1 S * ( μ + ς φ ( ω , μ ) ) D ( μ + ς φ ( ω , μ ) ) d ς = 1 ( φ ( ω , μ ) ) α   μ μ + φ ( ω , μ ) ( z μ ) α 1 S * ( 2 μ + φ ( ω , μ ) z ) D ( z ) d z + 1 ( φ ( ω , μ ) ) α   μ μ + φ ( ω , μ ) ( z μ ) α 1 S * ( z ) D ( z ) d z = 1 ( φ ( ω , μ ) ) α   μ μ + φ ( ω , μ ) ( μ + φ ( ω , μ ) z ) α 1 S * ( z ) D ( 2 μ + φ ( ω , μ ) z ) d z + 1 ( φ ( ω , μ ) ) α   μ μ + φ ( ω , μ ) ( z μ ) α 1 S * ( z ) D ( z ) d z = Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S * D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * D ( μ ) ] , 0 1 ς α 1 S * ( μ + ( 1 ς ) φ ( ω , μ ) ) D ( μ + ς φ ( ω , μ ) ) d ς + 0 1 ς α 1 S * ( μ + ς φ ( ω , μ ) ) D ( μ + ς φ ( ω , μ ) ) d ς = Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S * D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * D ( μ ) ]
From (30), we have:
Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S * D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * D ( μ ) ] ( S * ( μ ) + S * ( μ + φ ( ω , μ ) ) ) 0 1 ς α 1 [ χ ( ς ) + χ ( 1 ς ) ] D ( μ + ς φ ( ω , μ ) ) Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S * D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * D ( μ ) ] ( S * ( μ ) + S * ( μ + φ ( ω , μ ) ) ) 0 1 ς α 1 [ χ ( ς ) + χ ( 1 ς ) ] D ( μ + ς φ ( ω , μ ) ) ,
that is:
Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S * D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * D ( μ ) ,   μ + α   S * D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * D ( μ ) ] p [ S * ( μ ) + S * ( μ + φ ( ω , μ ) ) ,   S * ( μ ) + S * ( μ + φ ( ω , μ ) ) ] 0 1 ς α 1 [ χ ( ς ) + χ ( 1 ς ) ] D ( μ + ς φ ( ω , μ ) ) d ς
Hence,
Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S D ( μ ) ] p ( S ( μ ) + S ( ω ) ) 0 1 ς α 1 [ χ ( ς ) + χ ( 1 ς ) ] D ( μ + ς φ ( ω , μ ) ) d ς
Now, we propose the first H-H Fejér inequality for LR-𝜒-pre-invex I-V·F using the interval Riemann–Liouville fractional integral. Then we will prove the validity of Theorem 6 and Theorem 7 with a nontrivial Example 3.
Theorem 7.
(First fractionalH-H Fejér inequality) Let S : [ μ ,   μ + φ ( ω , μ ) ] K C + be a LR-𝜒-pre-invex I-V·F such that S ( z ) = [ S * ( z ) ,   S * ( z ) ] for all z [ μ ,   μ + φ ( ω , μ ) ] . Let S   L ( [ μ ,   μ + φ ( ω , μ ) ] , K C + ) and D : [ μ ,   μ + φ ( ω , μ ) ] ,   D ( z ) 0 , symmetric with respect to 2 μ + φ ( ω , μ ) 2 . If φ satisfies condition C, then:
  1 2 χ ( 1 2 ) S ( 2 μ + φ ( ω , μ ) 2 ) [ μ + α   D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   D ( μ ) ] p [ μ + α   S D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S D ( μ ) ]
If  S  is pre-incave I-V·F, then inequality (31) is reversed.
Proof. 
Since S is a LR- χ -pre-invex I-V·F then, we have:
    S * ( 2 μ + φ ( ω , μ ) 2 ) χ ( 1 2 ) ( S * ( μ + ( 1 ς ) φ ( ω , μ ) ) + S * ( μ + ς φ ( ω , μ ) ) ) S * ( 2 μ + φ ( ω , μ ) 2 ) χ ( 1 2 ) ( S * ( μ + ( 1 ς ) φ ( ω , μ ) ) + S * ( μ + ς φ ( ω , μ ) ) ) .
Since D ( μ + ( 1 ς ) φ ( ω , μ ) ) = D ( μ + ς φ ( ω , μ ) ) , then by multiplying (32) by ς α 1 D ( μ + ς φ ( ω , μ ) ) and integrate it with respect to ς over [ 0 ,   1 ] , we obtain:
S * ( 2 μ + φ ( ω , μ ) 2 ) 0 1 ς α 1 D ( μ + ς φ ( ω , μ ) ) d ς χ ( 1 2 ) ( 0 1 ς α 1 S * ( μ + ( 1 ς ) φ ( ω , μ ) ) D ( μ + ς φ ( ω , μ ) ) d ς + 0 1 ς α 1 S * ( μ + ς φ ( ω , μ ) ) D ( μ + ς φ ( ω , μ ) ) d ς ) , S * ( 2 μ + φ ( ω , μ ) 2 ) 0 1 ς α 1 D ( μ + ς φ ( ω , μ ) ) d ς χ ( 1 2 ) ( 0 1 ς α 1 S * ( μ + ( 1 ς ) φ ( ω , μ ) ) D ( μ + ς φ ( ω , μ ) ) d ς + 0 1 ς α 1 S * ( μ + ς φ ( ω , μ ) ) D ( μ + ς φ ( ω , μ ) ) d ς ) .
Let x = μ + ς φ ( ω , μ ) . Then, on the right hand side of inequality (33), we have:
0 1 ς α 1 S * ( μ + ( 1 ς ) φ ( ω , μ ) ) D ( μ + ς φ ( ω , μ ) ) d ς + 0 1 ς α 1 S * ( μ + ς φ ( ω , μ ) ) D ( μ + ς φ ( ω , μ ) ) d ς = 1 ( φ ( ω , μ ) ) α   μ μ + φ ( ω , μ ) ( z μ ) α 1 S * ( 2 μ + φ ( ω , μ ) z ) D ( z ) d z + 1 ( φ ( ω , μ ) ) α   μ μ + φ ( ω , μ ) ( z μ ) α 1 S * ( z ) D ( z ) d z = 1 ( φ ( ω , μ ) ) α   μ μ + φ ( ω , μ ) ( z μ ) α 1 S * ( z ) D ( μ ω z ) d z + 1 ( φ ( ω , μ ) ) α   μ μ + φ ( ω , μ ) ( z μ ) α 1 S * ( z ) D ( z ) d z = Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S * D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * D ( μ ) ] , 0 1 ς α 1 S * ( μ + ( 1 ς ) φ ( ω , μ ) ) D ( μ + ς φ ( ω , μ ) ) d ς + 0 1 ς α 1 S * ( μ + ς φ ( ω , μ ) ) D ( μ + ς φ ( ω , μ ) ) d ς = Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S * D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * D ( μ ) ] .
Then from (34), we have:
1 2 χ ( 1 2 ) S * ( 2 μ + φ ( ω , μ ) 2 ) [ μ + α   D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   D ( μ ) ] [ μ + α   S * D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * D ( μ ) ] 1 2 χ ( 1 2 ) S * ( 2 μ + φ ( ω , μ ) 2 ) [ μ + α   D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   D ( μ ) ] [ μ + α   S * D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * D ( μ ) ] ,
from which, we have:
1 2 χ ( 1 2 ) [ S * ( 2 μ + φ ( ω , μ ) 2 ) ,   S * ( 2 μ + φ ( ω , μ ) 2 ) ] [ μ + α   D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   D ( μ ) ] p [   μ + α   S * D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * D ( μ ) ,     μ + α   S * D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * D ( μ ) ] ,
and it follows that:
1 2 χ ( 1 2 ) S ( 2 μ + φ ( ω , μ ) 2 ) [ μ + α   D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   D ( μ ) ] p [ μ + α   S D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S D ( μ ) ]
This completes the proof. □
Remark 5.
If D ( z ) = 1 , then from (26) and (31), we get Theorem 3.
If χ ( ς ) = ς , then from (26) and (31), we achieve the following coming inequality, see [42]:
S ( 2 μ + φ ( ω , μ ) 2 ) [ μ + α   D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   D ( μ ) ] p [ μ + α   S D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S D ( μ ) ] p S ( μ ) + S ( μ + φ ( ω , μ ) ) 2 [ μ + α   D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   D ( μ ) ] p S ( μ ) + S ( ω ) 2 [ μ + α   D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   D ( μ ) ]
Let  χ ( ς ) = ς  and  α = 1 . Then, from (26) and (31), we achieve the following coming inequality:
S ( 2 μ + φ ( ω , μ ) 2 ) p 1 μ μ + φ ( ω , μ ) D ( z ) d z   ( F R ) μ μ + φ ( ω , μ ) S ( z ) D ( z ) d z p S ( μ ) + S ( ω ) 2
If  S * ( z ) = S * ( z )  and  χ ( ς ) = ς , then from (26) and (31), we achieve the following coming inequality:
S ( 2 μ + φ ( ω , μ ) 2 ) [ μ + α   D ( ω ) + ω α   D ( μ ) ] [ μ + α   S D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S D ( μ ) ] S ( μ ) + S ( μ + φ ( ω , μ ) ) 2 [ μ + α   D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   D ( μ ) ] S ( μ ) + S ( ω ) 2 [ μ + α   D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   D ( μ ) ]
If  S * ( z ) = S * ( z )  and  α = 1  and  χ ( ς ) = ς , then from (26) and (31), we acquire the classical H-H Fejér inequality.
If  S * ( z ) = S * ( z )  and  D ( z ) = α = 1  and  χ ( ς ) = ς , then from (26) and (31), we acquire the classical H-H inequality.
Example 3.
We consider the I-V·F S : [ 0 ,   φ ( 2 , 0 ) ] K C + defined by, S ( z ) = [ 1 , 2 ] ( 2 z ) . Since end-point functions S * ( z ) ,   S * ( z ) are LR- χ -pre-invex functions, then S ( z ) is LR- χ -pre-invex I-V·F.
If:
D ( z ) = { z ,             σ [ 0 , 1 ] , 2 z ,       σ ( 1 ,   2 ] ,  
then D ( 2 z ) = D ( z ) 0 , for all z [ 0 ,   2 ] . Since S * ( z ) = ( 2 z ) and S * ( z ) = 2 ( 2 z ) . If χ ( ς ) = ς and α = 1 2 , then we compute the following:
S * ( μ ) + S * ( μ + φ ( ω , μ ) ) 2 0 1 ς α 1 [ χ ( ς ) + χ ( 1 ς ) ] D ( μ + ς φ ( ω , μ ) ) = π 2 ( 4 2 2 ) ,   S * ( μ ) + S * ( μ + φ ( ω , μ ) ) 2 0 1 ς α 1 [ χ ( ς ) + χ ( 1 ς ) ] D ( μ + ς φ ( ω , μ ) ) = π 2 ( 4 2 ) ,  
S * ( μ ) + S * ( μ + φ ( μ + φ ( ω , μ ) , μ ) ) 2 0 1 ς α 1 [ χ ( ς ) + χ ( 1 ς ) ] D ( μ + ς φ ( ω , μ ) ) = π 2 ( 4 2 2 ) ,   S * ( μ ) + S * ( μ + φ ( ω , μ ) ) 2 0 1 ς α 1 [ χ ( ς ) + χ ( 1 ς ) ] D ( μ + ς φ ( ω , μ ) ) = π 2 ( 4 2 ) ,   Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S * D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * D ( μ ) ] = 1 π ( 2 π + 4 8 2 3 ) ,   Γ ( α ) ( φ ( ω , μ ) ) α [ μ + α   S * D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * D ( μ ) ] = 2 π ( 2 π + 4 8 2 3 ) .  
From (38) and (39), we have:
1 π [ ( 2 π + 4 8 2 3 ) ,   2 ( 2 π + 4 8 2 3 ) ]   p π 2 [ 4 2 2 ,   4 2 ] .
Hence, Theorem 6 is verified.
For Theorem 7, we have:
μ + α   S * D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * D ( μ ) = 1 π 0 2 ( 2 z ) 1 2   D ( z ) ( 2 z ) d z + 1 π 0 2 ( z ) 1 2     D ( z ) ( 2 z ) d z = 1 π ( π + 8 8 2 3 ) + 1 π ( π 4 3 ) = 1 π ( 2 π + 4 8 2 3 ) μ + α   S * D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   S * D ( μ ) = 2 π 0 2 ( 2 z ) 1 2   D ( z ) ( 2 z ) d z + 2 π 0 2 ( z ) 1 2     D ( z ) ( 2 z ) d z = 2 π ( π + 8 8 2 3 ) + 2 π ( π 4 3 ) = 2 π ( 2 π + 4 8 2 3 ) .
    1 2 χ ( 1 2 ) S * ( 2 μ + φ ( ω , μ ) 2 ) [ μ + α   D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   D ( μ ) ] = π ,   1 2 χ ( 1 2 ) S * ( 2 μ + φ ( ω , μ ) 2 ) [ μ + α   D ( μ + φ ( ω , μ ) ) + μ + φ ( ω , μ ) α   D ( μ ) ] = 2 π .  

4. Conclusions

We have proposed the class of LR- χ -pre-invexity for I-V·Fs. By using this class, we have presented several interval H-H inequalities and interval H-H Fejér inequalities using interval Riemann–Liouville fractional integral operators. Useful examples that illustrate the applicability of theory developed in this study are also presented. In future, we intend to discuss generalized LR- χ -pre-invex I-V·Fs. We hope that this concept will be helpful for other authors to play their roles in different fields of sciences.

Author Contributions

Conceptualization, M.B.K.; methodology, M.B.K.; validation, S.T., M.S.S. and H.G.Z.; formal analysis, K.N.; investigation, M.S.S.; resources, S.T.; data curation, H.G.Z.; writing—original draft preparation, M.B.K., K.N. and H.G.Z.; writing—review and editing, M.B.K. and S.T.; visualization, H.G.Z.; supervision, M.B.K. and M.S.S.; project administration, M.B.K.; funding acquisition, K.N., M.S.S. and H.G.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Acknowledgments

The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research. This work was funded by Taif University Researchers Supporting Project number (TURSP-2020/345), Taif University, Taif, Saudi Arabia. Moreover, this research has also received funding support from the National Science, Research and Innovation Fund (NSRF), Thailand.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hermite, C. Sur deux limites d’une intégrale définie. Mathesis 1883, 3, 82–97. [Google Scholar]
  2. Hadamard, J. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Mathématiques Pures Appliquées 1893, 7, 171–215. [Google Scholar]
  3. Dragomir, S.; Pearce, C. Selected Topics on Hermite–Hadamard Inequalities and Applications; RGMIA Monographs; Victoria University: Melbourne, Australia, 2004. [Google Scholar]
  4. Peajcariaac, J.E.; Tong, Y.L. Convex Functions, Partial Orderings, and Statistical Applications; Academic Press: Bostan, MA, USA, 1992. [Google Scholar]
  5. Chen, F. A note on Hermite–Hadamard inequalities for products of convex functions. J. Appl. Math. 2013, 2013, 1–6. [Google Scholar] [CrossRef]
  6. Dragomir, S.S. Inequalities of Hermite–Hadamard type for h-convex functions on linear spaces. Proyecciones 2015, 34, 323–341. [Google Scholar] [CrossRef]
  7. Dragomir, S.S. Two mappings in connection to Hadamard’s inequalities. J. Math. Anal. Appl. 1992, 167, 49–56. [Google Scholar] [CrossRef] [Green Version]
  8. Dragomir, S.J.; Pecaric, L.-E. Persson, Some inequalities of Hadamard type. Soochow J. Math. 1995, 21, 335–341. [Google Scholar]
  9. Pachpatte, B. On some inequalities for convex functions. RGMIA Res. Rep. Collect. 2003, 6, 1–9. [Google Scholar]
  10. Wang, J.; Li, X.; Zhu, C. Refinements of Hermite–Hadamard type inequalities involving fractional integrals. Bull. Belg. Math. Soc. Simon Stevin 2013, 20, 655–666. [Google Scholar] [CrossRef]
  11. Sarikaya, M.Z.; Ertugral, F. On the generalized Hermite–Hadamard inequalities. Ann. Univ. Craioval Math. Comput. Sci. Ser. 2017, 47, 193–213. [Google Scholar]
  12. Sarikaya, M.; Yildirim, H. On generalization of the Riesz potential. Indian J. Math. Math. Sci. 2007, 3, 231–235. [Google Scholar]
  13. Ertugral, F.; Sarikaya, M.Z. Simpson type integral inequalities for generalized fractional integral. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, 113, 3115–3124. [Google Scholar] [CrossRef]
  14. Tseng, K.L.; Hwang, S.R. New Hermite–Hadamard-type inequalities and their applications. Filomat 2016, 30, 3667–3680. [Google Scholar] [CrossRef] [Green Version]
  15. Moore, R.E. Interval Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
  16. Chalco-Cano, Y.; Flores-Franulic, A.; Román-Flores, H. Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2012, 31, 457–472. [Google Scholar]
  17. Chalco-Cano, Y.; Lodwick, W.A.; Condori-Equice, W. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
  18. Román-Flores, H.; Chalco-Cano, Y.; Lodwick, W. Some integral inequalities for interval-valued functions. Comput. Appl. Math. 2018, 37, 1306–1318. [Google Scholar] [CrossRef]
  19. Costa, T. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
  20. Costa, T.; Román-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
  21. Flores-Franulic, A.; Chalco-Cano, Y.; Román-Flores, H. An Ostrowski type inequality for interval-valued functions. In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 24–28 June 2013; pp. 1459–1462. [Google Scholar]
  22. Román-Flores, H.; Chalco-Cano, Y.; Silva, G.N. A note on Gronwall type inequality for interval-valued functions. In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 24–28 June 2013; pp. 1455–1458. [Google Scholar]
  23. Sadowska, E. Hadamard inequality and a refinement of Jensen inequality for set valued functions. Results Math. 1997, 32, 332–337. [Google Scholar] [CrossRef]
  24. Mitroi, F.-C.; Nikodem, K.; Wasowicz, S. Hermite–Hadamard inequalities for convex set-valued functions. Demonstr. Math. 2013, 46, 655–662. [Google Scholar] [CrossRef] [Green Version]
  25. Nikodem, K.; Sanchez, J.L.; Sanchez, L. Jensen and Hermite–Hadamard inequalities for strongly convex set-valued maps. Math. Aeterna 2014, 4, 979–987. [Google Scholar]
  26. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for (h1, h2)-convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
  27. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Hamed, Y.S. New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities. Symmetry 2021, 13, 673. [Google Scholar] [CrossRef]
  28. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Alsharif, A.M.; Noor, K.I. New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Math. 2021, 6, 10964–10988. [Google Scholar] [CrossRef]
  29. Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some new classes of preinvex fuzzy-interval-valued functions and inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
  30. Liu, P.; Khan, M.B.; Noor, M.A.; Noor, K.I. New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense. Complex Intell. Syst. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
  31. Khan, M.B.; Noor, M.A.; Al-Bayatti, H.M.; Noor, K.I. Some new inequalities for LR-log-h-convex interval-valued functions by means of pseudo order relation. Appl. Math. Inf. Sci. 2021, 15, 459–470. [Google Scholar]
  32. Sana, G.; Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Chu, Y.M. Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann–Liouville fractional integral inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1809–1822. [Google Scholar] [CrossRef]
  33. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Abualnaja, K.M. Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions. Math. Biosci. Eng. 2021, 18, 6552–6580. [Google Scholar] [CrossRef]
  34. Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications; Springer: New York, NY, USA, 2006. [Google Scholar]
  35. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 2020, 1–27. [Google Scholar] [CrossRef]
  36. Lupulescu, V. Fractional calculus for interval-valued functions. Fuzzy Sets Syst. 2015, 265, 63–85. [Google Scholar] [CrossRef]
  37. Budak, H.; Tunç, T.; Sarikaya, M. Fractional Hermite-Hadamard-type inequalities for interval-valued functions. Proc. Am. Math. Soc. 2020, 148, 705–718. [Google Scholar] [CrossRef] [Green Version]
  38. Khan, M.B.; Noor, M.A.; Noor, K.I. Some Inequalities for LR-(h1,h2)-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Int. J. Comput. Intell. Syst. 2021, 14, 180. [Google Scholar] [CrossRef]
  39. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Baleanu, D.; Guirao, J. Some New Fractional Estimates of Inequalities for LR-p-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Axioms 2021, 10, 175. [Google Scholar] [CrossRef]
  40. Mohan, S.R.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef] [Green Version]
  41. Khan, M.B.; Noor, M.A.; Abdeljawad, T.; Mousa, A.A.A.; Abdalla, B.; Alghamdi, S.M. LR-Preinvex Interval-Valued Functions and Riemann–Liouville Fractional Integral Inequalities. Fractal Fract. 2021, 5, 243. [Google Scholar] [CrossRef]
  42. Khan, M.B.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K.; Zaini, H.G. Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 6. [Google Scholar] [CrossRef]
  43. Awan, M.U.; Noor, M.A.; Mihai, M.V.; Noor, K.I. Generalized Coordinated Nonconvex Functions and Integral Inequalities. Appl. Math. 2008, 12, 337–344. [Google Scholar] [CrossRef]
  44. Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Nonlaopon, K.; Hamed, Y.S. Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions. AIMS Math. 2022, 7, 4338–4358. [Google Scholar] [CrossRef]
  45. Khan, M.B.; Mohammed, P.O.; Machado, J.A.T.; Guirao, J.L. Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings. Symmetry 2021, 13, 2352. [Google Scholar] [CrossRef]
  46. Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Baleanu, D.; Jawa, T.M. Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals. AIMS Math. 2022, 7, 1507–1535. [Google Scholar] [CrossRef]
  47. Awan, M.U.; Noor, M.A.; Noor, K.I. Hermite-Hadamard inequalities for exponentially convex functions. Appl. Math. Inf. Sci. 2018, 12, 405–409. [Google Scholar] [CrossRef]
  48. Macías-Díaz, J.E.; Khan, M.B.; Noor, M.A.; Abd Allah, A.M.; Alghamdi, S.M. Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus. AIMS Math. 2022, 7, 4266–4292. [Google Scholar] [CrossRef]
  49. Saleem, N.; Abbas, M.; Raza, Z. Optimal coincidence best approximation solution in non-Archimedean Fuzzy Metric Spaces. Iran. J. Fuzzy Syst. 2016, 13, 113–124. [Google Scholar]
  50. Saleem, N.; Zhou, M.; Bashir, S.; Husnine, S.M. Some new generalizations of F-contraction type mappings that weaken certain conditions on Caputo fractional type differential equations. AIMS Math. 2021, 6, 12718. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Khan, M.B.; Zaini, H.G.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K. Riemann–Liouville Fractional Integral Inequalities for Generalized Pre-Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation. Mathematics 2022, 10, 204. https://doi.org/10.3390/math10020204

AMA Style

Khan MB, Zaini HG, Treanțǎ S, Soliman MS, Nonlaopon K. Riemann–Liouville Fractional Integral Inequalities for Generalized Pre-Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation. Mathematics. 2022; 10(2):204. https://doi.org/10.3390/math10020204

Chicago/Turabian Style

Khan, Muhammad Bilal, Hatim Ghazi Zaini, Savin Treanțǎ, Mohamed S. Soliman, and Kamsing Nonlaopon. 2022. "Riemann–Liouville Fractional Integral Inequalities for Generalized Pre-Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation" Mathematics 10, no. 2: 204. https://doi.org/10.3390/math10020204

APA Style

Khan, M. B., Zaini, H. G., Treanțǎ, S., Soliman, M. S., & Nonlaopon, K. (2022). Riemann–Liouville Fractional Integral Inequalities for Generalized Pre-Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation. Mathematics, 10(2), 204. https://doi.org/10.3390/math10020204

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop