Numerical Solution of Linear Volterra Integral Equation Systems of Second Kind by Radial Basis Functions
Abstract
:1. Introduction
2. Notations and Preliminaries
- the semi–inner products, for any ,
- the corresponding semi–norms , for ,
- the inner product ,
- and the corresponding norm .
3. Discretization Space
4. Formulation of the Problem
5. Convergence Result
6. Computation
7. Numerical Examples
8. Conclusions
- –
- a numerical comparison between our method and many others in the literature,
- –
- the theoretical study of the order of convergence of the presented method,
- –
- the adaptation of this procedure to find the numerical solution of the linear systems of 2D Volterra integral equations of the second kind.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Volterra, V. Leçons sur les équations intégrales et intégro-différentielles; Gauthier-Villars: Paris, France, 1913. [Google Scholar]
- Corduneanu, C.; Sandberg, I.W. Volterra Equations and Applications; Gordon and Breach: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Baker, C.T.H. Numerical Analysis of Volterra Functional and Integral Equations. In The State of the Art in Numerical Analysis; Duff, I.S., Watson, G.A., Eds.; Oxford University Press: New York, NY, USA, 1997; pp. 193–222. [Google Scholar]
- Cahlon, B. Numerical solution of nonlinear Volterra integral equations. J. Comput. Appl. Math. 1981, 7, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Shampine, L.F. Solving Volterra integral equations with ODE codes. IMA J. Numer. Anal. 1988, 8, 37–41. [Google Scholar] [CrossRef]
- Brunner, H. 1896–1996: One hundred years of Volterra integral equations of the first kind. Appl. Numer. Math. 1997, 24, 83–93. [Google Scholar] [CrossRef]
- Brunner, H.; Pedas, A.; Vainikko, G. The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations. Math. Comp. 1999, 68, 1079–1095. [Google Scholar] [CrossRef] [Green Version]
- Elnagar, G.N.; Kazemi, M. Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations. J. Comput. Appl. Math. 1996, 76, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Daubechies, I. Ten Lectures on Wavelets; CBMS-NSF Regional Conference Series in Applied Mathematics; SIAM: Philadelphia, PA, USA, 1992. [Google Scholar]
- Aziz, I.; Siraj-ul-Islam. New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets. J. Comput. Appl. Math. 2013, 239, 333–345. [Google Scholar] [CrossRef]
- Babolian, E.; Shahsavaran, A. Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets. J. Comput. Appl. Math. 2009, 225, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Lepik, Ü. Solving integral and differential equations by the aid of non-uniform Haar wavelets. Appl. Math. Comput. 2008, 198, 326–332. [Google Scholar] [CrossRef]
- Maleknejad, K.; Mirzaee, F. Using rationalized Haar wavelet for solving linear integral equations. Appl. Math. Comput. 2005, 160, 579–587. [Google Scholar] [CrossRef]
- Mirzaae, F. Numerical computational solution of the linear Volterra integral equations systems via rationalized Haar functions. J. King Saud Univ. Sci. 2010, 22, 265–268. [Google Scholar] [CrossRef] [Green Version]
- Maleknejad, K.; Almasieh, H.; Roodaki, M. Triangular functions (TF) method for the solution of nonlinear Volterra–Fredholm integral equations. Comm. Nonlinear Sci. Numer. Simulat. 2010, 15, 3293–3298. [Google Scholar] [CrossRef]
- Deb, A.; Sarkar, G.; Sengupta, A. Triangular Orthogonal Functions for the Analysis of Continuous Time Systems; Elsevier: New Delhi, India, 2007. [Google Scholar]
- Roodaki, M.; Almasieh, H. Delta basis functions and their applications to systems of integral equations. Comput. Math. Appl. 2012, 63, 100–109. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, M.; Tavassoli Kajani, M.; Babolian, E. Numerical Solutions of the Nonlinear Volterra-Fredholm Integral Equations by Using Homotopy Perturbation Method. Appl. Math. Comput. 2007, 188, 446–449. [Google Scholar] [CrossRef]
- Wazwaz, A.-M. The combined Laplace transform–Adomian decomposition method for handling nonlinear Volterra integro–differential equations. Appl. Math. Comput. 2010, 216, 1304–1309. [Google Scholar] [CrossRef]
- Yousefi, S.; Razzaghi, M. Legendre wavelets method for the nonlinear Volterra–Fredholm integral equations. Math. Comput. Simulat. 2005, 70, 1–8. [Google Scholar] [CrossRef]
- Maleknejad, K.; Kajani, M.T. Solving integro-differential equation by using Hybrid Legendre and block-pulse functions. Int. J. Appl. Math. 2002, 11, 67–76. [Google Scholar]
- El-Borai, M.; Abdou, M.A.; Badr, A.A.; Basseem, M. Chebyshev Polynomials and Fredholm-Volterra integral equation. Int. J. Appl. Math. Mech. 2008, 4, 78–92. [Google Scholar]
- Youssri, Y.H.; Hafez, R.M. Chebyshev collocation treatment of Volterra–Fredholm integral equation with error analysis. Arab. J. Math. 2020, 9, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Berenguer, M.I.; Gámez, D.; Garralda-Guillém, A.I.; Ruiz Galán, M.; Serrano Pérez, M.C. Analytical Techniques for a Numerical Solution of the Linear Volterra Integral Equation of the Second Kind. Abstr. Appl. Anal. 2009, 14936. [Google Scholar] [CrossRef]
- Berenguer, M.I.; Gámez, D.; Garralda-Guillém, A.I.; Ruiz Galán, M.; Serrano Pérez, M.C. Nonlinear Volterra Integral Equation of the Second Kind and Biorthogonal Systems. Abstr. Appl. Anal. 2010, 135216. [Google Scholar] [CrossRef]
- Şahn, N.; Yüzbaşi, Ş.; Glsu, M. A collocation approach for solving systems of linear Volterra integral equations with variable coefficients. Comput. Math. Appl. 2011, 62, 755–769. [Google Scholar] [CrossRef] [Green Version]
- Balakumar, V.; Murugesan, K. Numerical solution of Volterra integral-algebraic equations using block pulse functions. Appl. Math. Comput. 2015, 263, 165–170. [Google Scholar] [CrossRef]
- Yang, L.-H.; Shen, J.-H.; Wang, Y. The reproducing kernel method for solving the system of the linear Volterra integral equations with variable coefficients. J. Comput. Appl. Math. 2012, 236, 2398–2405. [Google Scholar] [CrossRef]
- Delves, L.M.; Mohamed, J.L. Computational Methods for Integral Equations; Cambridge University Press: New York, NY, USA, 1985. [Google Scholar]
- Van der Houwen, P.J.; Sommeijer, B.P. Euler-Chebyshev methods for integro-differential equations. Appl. Numer. Math. 1997, 24, 203–218. [Google Scholar] [CrossRef] [Green Version]
- Draidi, W.; Qatanani, N. Numerical Schemes for solving Volterra integral equations with Carleman kernel. Int. J. Appl. Math. 2005, 31, 647–669. [Google Scholar] [CrossRef] [Green Version]
- Issa, A.; Qatanani, N.; Daraghmeh, A. Approximation Techniques for Solving Linear Systems of Volterra Integro-Differential Equations. J. Appl. Math. 2020, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, S.; Gupta, A.R. Solution of Linear Volterra Integro-Differential Equations of Second Kind Using Kamal Transform. J. Emerg. Technol. Innov. Res. 2019, 6, 741–747. [Google Scholar]
- Chauhan, R.; Aggarwal, S. Laplace Transform for Convolution Type Linear Volterra Integral Equation of Second Kind. J. Adv. Res. Appl. Math. Stat. 2019, 4, 1–7. [Google Scholar]
- Mahgoub, M.M.A. The new integral transform: Sawi transform. Adv. Theor. Appl. Math. 2019, 14, 81–87. [Google Scholar]
- Islam, M.S.; Islam, M.S.; Bangalee, M.Z.I.; Khan, A.K.; Halder, A. Approximate Solution of Systems of Volterra Integral Equations of Second Kind by Adomian Decomposition Method. Dhaka. Univ. J. Sci. 2015, 63, 15–18. [Google Scholar] [CrossRef] [Green Version]
- Hong, Z.; Fang, X.; Yan, Z.; Hao, H. On Solving a System of Volterra Integral Equations with Relaxed Monte Carlo Method. J. Appl. Math. Phys. 2016, 4, 1315–1320. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.; Omar, M.; Ullah, Z. Discretization method for the numerical solution of 2D Volterra integral equation based on two-dimensional Bernstein polynomials. AIP Adv. 2018, 8, 125209. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, S.; Sharma, N.; Chauhan, R. Solution of Linear Volterra Integral Equations of Second Kind Using Mohand Transform. IJRAT 2018, 6, 3098–3102. [Google Scholar]
- Muhammad, A.M.; Ayal, A.M. Numerical Solution of Linear Volterra Integral Equation with Delay using Bernstein Polynomial. IEJME 2019, 14, 735–740. [Google Scholar] [CrossRef] [Green Version]
- Kasumo, C. On the Approximate Solutions of Linear Volterra Integral Equations of the First Kind. Appl. Math. Sci. 2020, 14, 141–153. [Google Scholar] [CrossRef]
- Bjornsson, H.; Hafstein, S. Advanced algorithm for interpolation with Wendland functions. In Informatics in Control, Automation and Robotics (ICINCO 2019); Lecture Notes in Electrical Engineering; Gusikhin, O., Madani, K., Zaytoon, J., Eds.; Springer: New York, NY, USA, 2019; pp. 99–117. [Google Scholar]
- Assari, P.; Dehghan, M. A meshless local Galerkin method for solving Volterra integral equations deduced from nonlinear fractional differential equations using the moving least squares technique. Appl. Numer. Math. 2019, 143, 276–299. [Google Scholar] [CrossRef]
- Farshadmoghadam, F.; Azodi, H.D.; Yaghouti, M.R. An improved radial basis functions method for the high-order Volterra-Fredholm integro-differential equations. Math. Sci. 2021. [Google Scholar] [CrossRef]
- Maleknejad, K.; Mohammadikia, H.; Rashidinia, J. A numerical method for solving a system of Volterra–Fredholm integral equations of the second kind based on the meshless method. Afrika Mat. 2018, 29, 955–965. [Google Scholar] [CrossRef]
- Uddin, M.; Ullah, N.; Ali-Shah, S.I. RBF Based Localized Method for Solving Nonlinear Partial Integro-Differential Equations. Comput. Model. Eng. Sci. 2020, 123, 957–972. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Y.; Nie, X. Solving the Linear Integral Equations Based on Radial Basis Function Interpolation. J. Appl. Math. 2014, 1–18. Available online: https://www.hindawi.com/journals/jam/2014/793582/ (accessed on 20 October 2021). [CrossRef] [Green Version]
- Atkinson, K.; Weiman, H. Theoretical Numerical Analysis. A Functional Analysis Framework, 2nd ed.; Springer: New York, NY, USA, 2005. [Google Scholar]
- Kouibia, A.; Pasadas, M.; Rodriguez, M.L. A variational method for solving Fredholm integral systems. Appl. Numer. Math. 2012, 66, 1041–1049. [Google Scholar] [CrossRef]
- Wendland, H. Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree. J. Approx. Theory 1998, 93, 258–272. [Google Scholar] [CrossRef] [Green Version]
- Wendland, H. Meshless Garlekin Methods Using Radial Basis Functions. Math. Comp. 1999, 228, 1521–1531. [Google Scholar] [CrossRef] [Green Version]
- Sablonière, P. Univariate spline quasi-interpolants and applications to numerical analysis. Rend. Sem. Mat. Univ. Pol. Torino 2005, 63, 107–118. [Google Scholar]
k | Wendland Function | Continuity Order |
---|---|---|
N | ||
---|---|---|
5 | ||
10 | ||
20 | ||
30 | ||
40 | ||
50 |
N | ||
---|---|---|
5 | ||
10 | ||
20 | ||
30 | ||
40 | ||
50 |
N | ||
---|---|---|
5 | ||
10 | ||
20 | ||
30 | ||
40 | ||
50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Rodelas, P.; Pasadas, M.; Kouibia, A.; Mustafa, B. Numerical Solution of Linear Volterra Integral Equation Systems of Second Kind by Radial Basis Functions. Mathematics 2022, 10, 223. https://doi.org/10.3390/math10020223
González-Rodelas P, Pasadas M, Kouibia A, Mustafa B. Numerical Solution of Linear Volterra Integral Equation Systems of Second Kind by Radial Basis Functions. Mathematics. 2022; 10(2):223. https://doi.org/10.3390/math10020223
Chicago/Turabian StyleGonzález-Rodelas, Pedro, Miguel Pasadas, Abdelouahed Kouibia, and Basim Mustafa. 2022. "Numerical Solution of Linear Volterra Integral Equation Systems of Second Kind by Radial Basis Functions" Mathematics 10, no. 2: 223. https://doi.org/10.3390/math10020223
APA StyleGonzález-Rodelas, P., Pasadas, M., Kouibia, A., & Mustafa, B. (2022). Numerical Solution of Linear Volterra Integral Equation Systems of Second Kind by Radial Basis Functions. Mathematics, 10(2), 223. https://doi.org/10.3390/math10020223