Modified Class of Estimators Using Ranked Set Sampling
Abstract
:1. Introduction
- (i).
- Select m samples randomly, each of size m, from the parent population.
- (ii).
- Perform judgement ordering by using any inexpensive measure on the elements of the , sample and distinguish the smallest unit.
- (iii).
- Measure m distinguished units in step .
- (iv).
- Repeat the aforementioned steps (known as a cycle), r times, to draw the required ranked set samples of size .
2. Existing Estimators
3. Proposed Estimators
- (i).
- To provide a general and efficient class of estimators using the available auxiliary information optimally.
- (ii).
- To show that the present work increases the efficiency as compared to the remaining estimators proposed to date.
4. Conditions of Efficiency
5. Computational Study
5.1. Numerical Study
- (1).
- Source: (Ref. [29], p. 652)= Population in 1983 (in millions), = Export in 1983 (in millions of USD), = 457, = 12877, N = 124, = 36.65161, = 14276.03, = 116.8008, = 31431.81 and = 0.2225.
- (2).
- The data are chosen from [30] concerning the quantity of apple production and number of apple trees in 94 villages of the Mediterranean zone of Turkey in 1999 (Origin: Institute of Statistics, Republic of Turkey).= amount of apple yield, = quantity of apple trees, = 6325, = 55650, N = 94, = 9384.309, = 72409.95, = 29907.48, = 160757.30 and = 0.9011.
5.2. Simulation Study
- (1).
- Draw a population of size by using a normal distribution such that , and .
- (2).
- Draw a population of size by using a uniform distribution such that , and .
- (3).
- Draw a population of size by using an exponential distribution such that , and .
5.3. Interpretation of Computational Findings
- The numerical findings summarized in Table 2 for populations 1–2 exhibit the ascendancy of the proffered estimators regarding the known estimators, namely , , , , , , , and by a greater and lesser .
- Furthermore, the results of the numerical study using natural populations, which are reported in Table 2, are also presented through the bar diagrams given in Figure 1. The performance of the proffered estimators can easily be observed from Figure 1. The PRE of the simulation results of Table 3, Table 4 and Table 5 also exhibit the similar tendency and can be easily presented through bar diagrams, if required.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- McIntyre, G.A. A method of unbiased selective sampling using ranked set. Aust. J. Agric. Res. 1952, 3, 385–390. [Google Scholar] [CrossRef]
- Takahasi, K.; Wakimoto, K. On unbiased estimates of the population mean based on the sample stratified by means of ordering. Ann. Inst. Stat. Math. 1968, 20, 1–31. [Google Scholar] [CrossRef]
- Muttlak, H.A.; McDonald, L.L. Ranked set sampling with respect to a concomitant variables and with size biased probability of selection. Commun. Stat. Theory Mathods 1990, 19, 205–219. [Google Scholar] [CrossRef]
- Muttlak, H.A.; McDonald, L.L. Ranked set sampling and line intercept method: A more efficient procedure. Biom. J. 1992, 34, 329–346. [Google Scholar] [CrossRef]
- Samawi, H.M.; Muttlak, H.A. Estimation of ratio using ranked set sampling. Biom. J. 1996, 38, 753–764. [Google Scholar] [CrossRef]
- Yu, L.H.; Lam, K. Regression estimator in ranked set sampling. Biometrics 1997, 53, 1070–1080. [Google Scholar] [CrossRef]
- Al-Omari, A.I.; Jemain, A.A.; Ibrahim, K. New ratio estimators of the mean using simple random sampling and ranked set sampling methods. Rev. Investig. Oper. 2009, 30, 97–108. [Google Scholar]
- Mehta, N.; Mandowara, V.L. A modified ratio-cum-product estimator of finite population mean using ranked set sampling. Commun. Stat. Theory Methods 2016, 45, 267–276. [Google Scholar] [CrossRef]
- Mahdizadeh, M.; Zamanzade, E. Reliability estimation in multistage ranked set sampling. REVSTAT Stat. J. 2017, 15, 565–581. [Google Scholar]
- Zamanzade, E.; Mahdizadeh, M. Entropy estimation from ranked set samples with application to test of fit. Rev. Colomb. Estad. 2017, 40, 223–241. [Google Scholar] [CrossRef]
- Mahdizadeh, M.; Zamanzade, E. Estimation of a symmetric distribution function in multistage ranked set sampling. Stat. Pap. 2018, 61, 851–867. [Google Scholar] [CrossRef]
- Zamanzade, E.; Mahdizadeh, M. Proportion estimation in ranked set sampling in the presence of tie information. Comput. Stat. 2018, 33, 1349–1366. [Google Scholar] [CrossRef]
- Shahzad, U.; Ahmad, I.; Oral, E.; Hanif, M.; Almanjahie, I. Estimation of the population mean by successive use of an auxiliary variable in median ranked set sampling. Math. Popul. Stud. 2020, 28, 176–199. [Google Scholar] [CrossRef]
- Zamanzade, E.; Mahdizadeh, M. Using ranked set sampling with extreme ranks in estimating the population proportion. Stat. Methods Med. Res. 2020, 29, 165–177. [Google Scholar] [CrossRef]
- Bhushan, S.; Kumar, A.; Lone, S.A. On some novel classes of estimators under ranked set sampling. AEJ Alex. Eng. J. 2021, 61, 5465–5474. [Google Scholar] [CrossRef]
- Bhushan, S.; Kumar, A. Novel log type class of estimators under ranked set sampling. Sankhya B 2022, 84, 421–447. [Google Scholar] [CrossRef]
- Bhushan, S.; Kumar, A. Predictive estimation approach using difference and ratio type estimators in ranked set sampling. J. Comput. Appl. Math. 2022, 410, 114214. [Google Scholar] [CrossRef]
- Prasad, B. Some improved ratio type estimators of population mean and ratio in finite population sample surveys. Commun. Stat. Theory Methods 1989, 18, 379–392. [Google Scholar] [CrossRef]
- Kadilar, C.; Unyazici, Y.; Cingi, H. Ratio estimator for the population mean using ranked set sampling. Stat. Pap. 2009, 50, 301–309. [Google Scholar] [CrossRef]
- Singh, H.P.; Tailor, R.; Singh, S. General procedure for estimating the population mean using ranked set sampling. J. Stat. Comput. Simul. 2014, 84, 931–945. [Google Scholar] [CrossRef]
- Singh, H.P.; Espejo, M.R. On linear regression and ratio estimator using coefficient of variation of auxiliary variate. Statistician 2003, 52, 59–67. [Google Scholar] [CrossRef]
- Upadhyaya, L.N.; Singh, H.P. Use of transformed auxiliary variable in estimating the finite population mean. Biome. J. 1999, 41, 627–636. [Google Scholar] [CrossRef]
- Singh, H.P.; Kakran, M.S. A modified ratio estimator using known coefficient of kurtosis of auxiliary character. In Advanced Sampling Theory with Applications; Singh, S., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993; Volume 2. [Google Scholar]
- Sisodia, B.V.S.; Dwivedi, V.K. A modified ratio estimator using coefficient of variation of auxiliary variable. J. Indian Soc. Agric. Stat. 1981, 33, 13–18. [Google Scholar]
- Mehta, V.; Singh, H.P.; Pal, S.K. A general procedure for estimating finite population mean using ranked set sampling. Rev. Investig. Oper. 2020, 41, 80–92. [Google Scholar]
- Bhushan, S.; Kumar, A. Log type estimators of population mean under ranked set sampling. Pred. Anal. Stat. Big Data Conc. Model. 2020, 28, 47–74. [Google Scholar]
- Bhushan, S.; Kumar, A. On optimal classes of estimators under ranked set sampling. Commun. Stat. Theory Methods 2022, 51, 2610–2639. [Google Scholar] [CrossRef]
- Bhushan, S.; Kumar, A.; Kumar, S.; Singh, S. Some modified classes of estimators for population variance using auxiliary attribute. Pak. J. Stat. 2022, 38, 235–252. [Google Scholar]
- Sarndal, C.E.; Swensson, B.; Wretman, J. Model Assisted Survey Sampling; Springer: New York, NY, USA, 2003. [Google Scholar]
- Kadilar, C.; Cingi, H. Ratio estimators in stratified random sampling. Biom. J. 2003, 45, 218–225. [Google Scholar] [CrossRef]
- Singh, H.P.; Horn, S. An alternative estimator for multi-character surveys. Metrika 1998, 48, 99–107. [Google Scholar] [CrossRef]
Estimator | c | d | ||||
---|---|---|---|---|---|---|
1 | 0 | - | - | - | - | |
Usual mean estimator | ||||||
1 | 0 | 1 | - | 1 | 0 | |
[5] estimator | ||||||
k | 0 | 1 | - | 1 | 0 | |
[19] estimator | ||||||
1 | 0 | 1 | - | 1 | ||
[7] estimator | ||||||
1 | 0 | 1 | - | 1 | ||
[8] estimator | ||||||
1 | 0 | 1 | - | 1 | ||
[8] estimator | ||||||
1 | 0 | 1 | - | |||
[8] estimator | ||||||
0 | 1 | - | 1 | 0 | ||
[26] estimator | ||||||
0 | 1 | - | c | d | ||
[26] estimator | ||||||
0 | - | 1 | 0 | |||
[27] estimator | ||||||
0 | - | c | d | |||
[27] estimator |
Estimators | Population 1 | Population 2 | ||
---|---|---|---|---|
1120.432 | 100.000 | 72,399,428 | 100.000 | |
1006.417 | 111.322 | 16,188,326 | 447.232 | |
966.996 | 115.867 | 13,326,029 | 543.293 | |
685.567 | 163.431 | 11,868,165 | 610.030 | |
517.112 | 216.670 | 13,324,593 | 543.351 | |
1006.433 | 111.326 | 16,188,947 | 447.215 | |
1006.215 | 111.350 | 16,195,082 | 447.045 | |
1006.354 | 111.335 | 16,191,369 | 447.148 | |
1930.924 | 58.025 | 200,444,160 | 36.119 | |
1007.626 | 111.195 | 13,330,628 | 543.105 | |
512.258 | 218.723 | 11,574,566 | 625.504 | |
510.469 | 219.456 | 12,799,123 | 565.659 | |
479.764 | 233.537 | 11,379,567 | 636.223 |
Estimators | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | |||||
---|---|---|---|---|---|---|---|---|---|---|
15.81 | 100.00 | 15.81 | 100.00 | 15.81 | 100.00 | 15.81 | 100.00 | 15.81 | 100.00 | |
48.08 | 32.87 | 33.98 | 46.52 | 26.22 | 60.28 | 21.43 | 73.76 | 18.49 | 85.46 | |
14.50 | 108.96 | 14.37 | 110.01 | 14.01 | 112.83 | 13.42 | 117.73 | 12.61 | 125.36 | |
47.67 | 33.16 | 33.64 | 46.99 | 25.93 | 60.96 | 21.18 | 74.64 | 18.27 | 86.49 | |
14.15 | 111.68 | 14.01 | 112.83 | 13.66 | 115.73 | 13.09 | 120.70 | 12.30 | 128.44 | |
45.60 | 34.66 | 33.01 | 47.89 | 25.75 | 61.38 | 21.17 | 74.68 | 18.31 | 86.34 | |
42.11 | 37.53 | 31.01 | 50.98 | 24.55 | 64.38 | 20.39 | 77.53 | 17.70 | 89.30 | |
41.40 | 38.18 | 29.94 | 52.80 | 23.61 | 66.94 | 19.65 | 80.44 | 17.10 | 92.45 | |
42.45 | 37.24 | 35.73 | 44.24 | 33.00 | 47.90 | 32.21 | 49.07 | 33.11 | 47.74 | |
14.67 | 107.71 | 14.54 | 108.72 | 14.18 | 111.44 | 13.61 | 116.14 | 12.81 | 123.41 | |
14.18 | 111.44 | 14.05 | 112.49 | 13.71 | 115.31 | 13.14 | 120.23 | 12.36 | 127.90 | |
14.19 | 111.40 | 14.04 | 112.57 | 13.69 | 115.46 | 13.12 | 120.43 | 12.33 | 128.13 | |
14.14 | 111.76 | 13.99 | 113.01 | 13.62 | 116.02 | 13.05 | 121.13 | 12.25 | 129.05 |
Estimators | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | |||||
---|---|---|---|---|---|---|---|---|---|---|
303.03 | 100.00 | 303.03 | 100.00 | 303.03 | 100.00 | 303.03 | 100.00 | 303.03 | 100.00 | |
515.89 | 58.73 | 429.32 | 70.58 | 375.10 | 80.78 | 338.05 | 89.64 | 315.91 | 95.92 | |
277.62 | 109.15 | 274.14 | 110.53 | 267.66 | 113.21 | 257.84 | 117.52 | 244.95 | 123.70 | |
508.70 | 59.56 | 422.89 | 71.65 | 369.26 | 82.06 | 332.75 | 91.06 | 311.26 | 97.35 | |
271.27 | 111.70 | 267.70 | 113.19 | 261.35 | 115.94 | 251.83 | 120.32 | 239.22 | 126.67 | |
514.99 | 58.84 | 428.86 | 70.65 | 374.81 | 80.84 | 337.83 | 89.69 | 315.69 | 95.98 | |
512.89 | 59.08 | 427.44 | 70.89 | 373.73 | 81.08 | 336.96 | 89.92 | 314.88 | 96.23 | |
510.26 | 59.38 | 425.29 | 71.25 | 371.93 | 81.47 | 335.46 | 90.33 | 313.58 | 96.63 | |
563.57 | 53.76 | 538.91 | 56.22 | 536.58 | 56.47 | 551.67 | 54.92 | 600.52 | 50.46 | |
280.79 | 107.91 | 277.40 | 109.23 | 271.08 | 111.78 | 261.44 | 115.90 | 248.80 | 121.79 | |
271.30 | 111.69 | 267.96 | 113.08 | 261.75 | 115.76 | 252.30 | 120.10 | 239.87 | 126.32 | |
271.43 | 111.64 | 267.92 | 113.10 | 261.61 | 115.83 | 252.11 | 120.19 | 239.58 | 126.47 | |
270.88 | 111.86 | 267.18 | 113.41 | 260.68 | 116.24 | 250.99 | 120.73 | 238.19 | 127.22 |
Estimators | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | |||||
---|---|---|---|---|---|---|---|---|---|---|
176.04 | 100.00 | 176.04 | 100.00 | 176.04 | 100.00 | 176.04 | 100.00 | 176.04 | 100.00 | |
314.61 | 55.95 | 257.12 | 68.46 | 222.77 | 79.02 | 200.01 | 88.01 | 186.36 | 94.46 | |
160.12 | 109.94 | 155.90 | 112.91 | 149.76 | 117.54 | 143.02 | 123.08 | 135.42 | 129.99 | |
304.72 | 57.77 | 248.48 | 70.84 | 214.99 | 81.88 | 192.95 | 91.23 | 180.10 | 97.74 | |
151.31 | 116.34 | 147.28 | 119.52 | 141.66 | 124.26 | 135.43 | 129.98 | 128.17 | 137.34 | |
313.48 | 56.15 | 256.53 | 68.62 | 222.41 | 79.15 | 199.74 | 88.13 | 186.08 | 94.60 | |
309.61 | 56.85 | 254.29 | 69.23 | 220.96 | 79.67 | 198.69 | 88.60 | 185.05 | 95.13 | |
309.23 | 56.92 | 253.67 | 69.39 | 220.38 | 79.88 | 198.17 | 88.83 | 184.61 | 95.35 | |
347.43 | 50.66 | 333.10 | 52.84 | 333.00 | 52.86 | 342.87 | 51.34 | 371.45 | 47.39 | |
161.96 | 108.69 | 157.74 | 111.60 | 151.64 | 116.08 | 144.99 | 121.41 | 137.49 | 128.03 | |
151.39 | 116.28 | 147.64 | 119.23 | 142.10 | 123.88 | 135.92 | 129.51 | 128.87 | 136.60 | |
151.61 | 116.11 | 147.63 | 119.24 | 142.01 | 123.96 | 135.78 | 129.65 | 128.62 | 136.86 | |
150.86 | 116.69 | 146.53 | 120.13 | 140.67 | 125.14 | 134.22 | 131.15 | 126.74 | 138.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhushan, S.; Kumar, A.; Shahab, S.; Lone, S.A.; Almutlak, S.A. Modified Class of Estimators Using Ranked Set Sampling. Mathematics 2022, 10, 3921. https://doi.org/10.3390/math10213921
Bhushan S, Kumar A, Shahab S, Lone SA, Almutlak SA. Modified Class of Estimators Using Ranked Set Sampling. Mathematics. 2022; 10(21):3921. https://doi.org/10.3390/math10213921
Chicago/Turabian StyleBhushan, Shashi, Anoop Kumar, Sana Shahab, Showkat Ahmad Lone, and Salemah A. Almutlak. 2022. "Modified Class of Estimators Using Ranked Set Sampling" Mathematics 10, no. 21: 3921. https://doi.org/10.3390/math10213921
APA StyleBhushan, S., Kumar, A., Shahab, S., Lone, S. A., & Almutlak, S. A. (2022). Modified Class of Estimators Using Ranked Set Sampling. Mathematics, 10(21), 3921. https://doi.org/10.3390/math10213921