Conic Duality for Multi-Objective Robust Optimization Problem
Abstract
:1. Introduction
2. Supporting Theory
2.1. Convex Cone
2.2. Conic Optimization and Conic Duality
- 1 .
- The duality is symmetric: the dual problem is conic, and the problem dual of the dual problem is equivalent to the primal problem.
- 2 .
- (a)
- (b)
- 3 .
- Suppose that at least one of the two problems (6) and (7) is bounded and strictly feasible. Then a primal–dual feasible pair is comprised of optimal solutions to the respective problems:
- (a)
- If and only if (zero duality gap);
- (b)
- If and only if (complementary slackness).
2.3. Robust Optimization
2.4. Utility Function Method
3. Method
4. Results
4.1. Initial Model and Utility Function Method
4.2. Robust Counterpart Formulation for Multi-Objective Linear Optimization Problem
4.3. Dual Problems
4.3.1. Dual Problem for Problem with Ellipsoidal Uncertainty Sets
4.3.2. Dual Problem for Problem with Polyhedral Uncertainty Sets
5. Discussion
5.1. Duality Symmetry
- 1.
- 2.
- 3.
5.2. Weak Duality
5.3. Strong Duality
- 1.
- No vector that satisfies and for .
- 2.
- The duality is symmetric, i.e., the dual of (62) is equivalent to (61). This statement is explained in Section 5.1.
- 3.
- Primal problem (61) is strictly feasible if there is a feasible solution that satisfies
- 4.
- Dual problem (62) is strictly feasible if there is a feasible solution that satisfies
- 5.
- Weak duality: The optimal value of (62) is less than or equal to (61). This is explained in Section 5.2.
- 6.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CO | Conic Optimization |
CQP | Conic Quadratic Programming |
LP | Linear Programming |
RO | Robust Optimization |
RC | Robust Counterpart |
References
- Ahmad, I.; Kaur, A.; Sharma, M.K. Robust duality for generalized convex nonsmooth vector programs with uncertain data in constraints. RAIRO-Oper. Res. 2021, 55, 2181–2188. [Google Scholar] [CrossRef]
- Gabrel, V.; Lacroix, M.; Murat, C.; Remli, N. Robust location transportation problems under uncertain demands. Discret. Appl. Math. 2014, 164, 100–111. [Google Scholar] [CrossRef]
- Soyster, A.L. Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming. Oper. Res. 1973, 21, 1154–1157. [Google Scholar] [CrossRef] [Green Version]
- Ben-Tal, A.; Nemirovski, A. Robust solutions of uncertain linear programs. Oper. Res. Lett. 1999, 25, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ben-Tal, A.; Nemirovski, A. Robust optimization—Methodology and applications. Math. Program. 2002, 92, 453–480. [Google Scholar] [CrossRef]
- Glineur, F. Conic optimization: An elegant framework for convex optimization. Belg. J. Oper. Res. Stat. Comput. Sci. 2001, 41, 5–28. [Google Scholar]
- Chaerani, D. Recipes for Building the Dual of Conic Optimization Problem. J. Indones. Math. Soc. 2010, 16, 9–23. [Google Scholar] [CrossRef] [Green Version]
- Ekeocha, R.J.O.; Uzor, C.; Anetor, C. The Use of the Duality Principle to Solve Optimization Problems. Int. J. Recent Contrib. Eng. Sci. IT (iJES) 2018, 6, 33. [Google Scholar] [CrossRef]
- Wanka, G. Multiobjective control approximation problems: Duality and optimality. J. Optim. Theory Appl. 2000, 105, 457–475. [Google Scholar] [CrossRef]
- Luu, D.V.; Linh, P.T. Optimality and duality for nonsmooth multiobjective fractional problems using convexificators. J. Nonlinear Funct. Anal. 2021, 2021, 1. [Google Scholar]
- Mishra, S.K.; Kumar, R.; Laha, V.; Maurya, J.K. Optimality and duality for semidefinite multiobjective programming problems using convexificators. Appl. Numer. Optim. 2022, 4, 103–118. [Google Scholar]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Wolf, S. An Introduction to Duality in Convex Optimization. Network 2011, 153, 153–162. [Google Scholar] [CrossRef]
- Im, J.; Wolkowicz, H. Strict Feasibility and Degeneracy in Linear Programming. arXiv 2022, arXiv:2203.02795. [Google Scholar]
- Wolfe, P. A duality theorem for non-linear programming. Q. Appl. Math. 1961, 19, 239–244. [Google Scholar] [CrossRef]
- Wu, H.C. Wolfe duality for interval-valued optimization. J. Optim. Theory Appl. 2008, 138, 497–509. [Google Scholar] [CrossRef]
- Guoyin, L.; Fu, N.K. On extension of Fenchel duality and its application. SIAM J. Optim. 2008, 19, 1489–1509. [Google Scholar] [CrossRef]
- Shapiro, A. On duality theory of conic linear problems. In Semi-Infinite Programming; Springer: Berlin/Heidelberg, Germany, 2001; pp. 135–165. [Google Scholar]
- Mond, B. Mond–Weir Duality. In Optimization; Springer: Berlin/Heidelberg, Germany, 2009; pp. 157–165. [Google Scholar]
- Komodakis, N.; Pesquet, J.C. Playing with duality: An overview of recent primal? dual approaches for solving large-scale optimization problems. IEEE Signal Process. Mag. 2015, 32, 31–54. [Google Scholar] [CrossRef] [Green Version]
- Beck, A.; Ben-Tal, A. Duality in robust optimization: Primal worst equals dual best. Oper. Res. Lett. 2009, 37, 1–6. [Google Scholar] [CrossRef]
- Caprari, E.; Baiardi, L.C.; Molho, E. Primal worst and dual best in robust vector optimization. Eur. J. Oper. Res. 2019, 275, 830–838. [Google Scholar] [CrossRef]
- Kim, M.H. Duality theorem and vector saddle point theorem for robust multiobjective optimization problems. Commun. Korean Math. Soc. 2013, 28, 597–602. [Google Scholar] [CrossRef] [Green Version]
- Goberna, M.A.; Jeyakumar, V.; Li, G.; Vicente-Pérez, J. Robust solutions of multiobjective linear semi-infinite programs under constraint data uncertainty. SIAM J. Optim. 2014, 24, 1402–1419. [Google Scholar] [CrossRef] [Green Version]
- Chuong, T.D. Linear Matrix Inequality Conditions and Duality for a Class of Robust Multiobjective Convex Polynomial Programs. SIAM J. Optim. 2018, 28, 2466–2488. [Google Scholar] [CrossRef]
- Chuong, T.D. Robust Optimality and Duality in Multiobjective Optimization Problems under Data Uncertainty. SIAM J. Optim. 2020, 30, 1501–1526. [Google Scholar] [CrossRef]
- Ben-Tal, A.; den Hertog, D.; Vial, J.P. Deriving robust counterparts of nonlinear uncertain inequalities. Math. Program. 2015, 149, 265–299. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, Q.; Ding, R.; Sun, M.; Wang, G. Integrated scheduling of energy supply and demand in microgrids under uncertainty: A robust multi-objective optimization approach. Energy 2017, 130, 1–14. [Google Scholar] [CrossRef]
- Souza, D.L.; Lobato, F.S.; Gedraite, R. Robust Multiobjective Optimization Applied to Optimal Control Problems Using Differential Evolution. Chem. Eng. Technol. 2015, 38, 721–726. [Google Scholar] [CrossRef]
- Singh, S.; Biswal, M.P. A robust optimization model under uncertain environment: An application in production planning. Comput. Ind. Eng. 2021, 155, 107169. [Google Scholar] [CrossRef]
- Chiandussi, G.; Codegone, M.; Ferreroc, S.; Varesio, F. Comparison of multi-objective optimization methodologies for engineering applications. Comput. Math. Appl. 2012, 63, 912–942. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.S. Engineering Optimization: Theory and Practice, 4th ed.; John Wiley & Son: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Marler, R.T.; Arora, J.S. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 2004, 26, 369–395. [Google Scholar] [CrossRef]
- Marler, R.T.; Arora, J.S. The weighted sum method for multi-objective optimization: New insights. Struct. Multidiscip. Optim. 2010, 41, 853–862. [Google Scholar] [CrossRef]
- Ben-Tal, A.; Nemirovski, A. Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications; MPS-SIAM Series on Optimization: Philadelphia, PA, USA, 2001. [Google Scholar]
- Brinkhuis, J. Convex Analysis for Optimization: A Unified Approach, 1st ed.; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Ben-Tal, A.; Ghaoui, L.E.; Nemirovski, A. Robust Optimization; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Gorissen, B.L.; Yanikoğlu, I.; den Hertog, D. A practical guide to robust optimization. Omega 2015, 53, 124–137. [Google Scholar] [CrossRef]
- Mansfield, E. Microeconomics Theory/Applications, 5th ed.; W.W. Norton: New York, NY, USA, 1985. [Google Scholar]
Uncertainty Set | RC Formulation | Tractability | Description |
---|---|---|---|
Ellipsoidal | CQP | ||
Polyhedral | LP | ||
Uncertainty Set | RC Formulation | Description |
---|---|---|
Ellipsoidal | ||
Polyhedral | ||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muslihin, K.R.A.; Rusyaman, E.; Chaerani, D. Conic Duality for Multi-Objective Robust Optimization Problem. Mathematics 2022, 10, 3940. https://doi.org/10.3390/math10213940
Muslihin KRA, Rusyaman E, Chaerani D. Conic Duality for Multi-Objective Robust Optimization Problem. Mathematics. 2022; 10(21):3940. https://doi.org/10.3390/math10213940
Chicago/Turabian StyleMuslihin, Khoirunnisa Rohadatul Aisy, Endang Rusyaman, and Diah Chaerani. 2022. "Conic Duality for Multi-Objective Robust Optimization Problem" Mathematics 10, no. 21: 3940. https://doi.org/10.3390/math10213940
APA StyleMuslihin, K. R. A., Rusyaman, E., & Chaerani, D. (2022). Conic Duality for Multi-Objective Robust Optimization Problem. Mathematics, 10(21), 3940. https://doi.org/10.3390/math10213940