An Explicit Wavelet Method for Solution of Nonlinear Fractional Wave Equations
Abstract
:1. Introduction
2. Wavelet Approximation of Multiple Integrals in a Bounded Domain
3. Solution Procedure
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Abu-Shady, M.; Kaabar, M.K.A. A generalized definition of the fractional derivative with applications. Math. Probl. Eng. 2021, 2021, 9444803. [Google Scholar] [CrossRef]
- Abu-Shady, M.; Kaabar, M.K.A. A novel computational tool for the fractional-order special functions arising from modeling scientific phenomena via Abu-Shady–Kaabar fractional derivative. Comput. Math. Methods Med. 2022, 2022, 2138775. [Google Scholar] [CrossRef] [PubMed]
- Moshrefi-Torbati, M.; Hammond, J.K. Physical and geometrical interpretation of fractional operators. J. Frankl. I. 1998, 335, 1077–1086. [Google Scholar] [CrossRef]
- Atangana, A. Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fract. 2017, 102, 396–406. [Google Scholar] [CrossRef]
- Heymans, N.; Podlubny, I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 2006, 45, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Tang, Y.; Vázquez, L.; Yang, J. Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algorithms 2013, 64, 707–720. [Google Scholar] [CrossRef]
- Bhrawy, A.H.; Doha, E.H.; Baleanu, D.; Ezz-Eldien, S.S. A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 2015, 293, 142–156. [Google Scholar] [CrossRef]
- Heydari, M.H.; Hooshmandasl, M.R.; Ghaini, F.M.M.; Cattani, C. Wavelets method for the time fractional diffusion-wave equation. Phys. Lett. A. 2015, 379, 71–76. [Google Scholar] [CrossRef]
- Liang, Y.; Yao, Z.; Wang, Z. Fast high order difference schemes for the time fractional telegraph equation. Numer. Methods Partial Differ. Equ. 2020, 36, 154–172. [Google Scholar] [CrossRef]
- Wang, Y.; Mei, L. Generalized finite difference/spectral Galerkin approximations for the time-fractional telegraph equation. Adv. Differ Equ. 2017, 2017, 281. [Google Scholar] [CrossRef]
- Mohebbi, A.; Abbaszadeh, M.; Dehghan, M. The meshless method of radial basis functions for the numerical solution of time fractional telegraph equation. Int. J. Numer. Methods Heat Fluid Flow 2014, 24, 1636. [Google Scholar] [CrossRef]
- Hosseini, V.R.; Chen, W.; Avazzadeh, Z. Numerical solution of fractional telegraph equation by using radial basis functions. Eng. Anal. Bound. Elem. 2014, 38, 31–39. [Google Scholar] [CrossRef]
- Lyu, P.; Vong, S. A linearized second-order scheme for nonlinear time fractional Klein-Gordon type equations. Numer. Algorithms 2018, 78, 485–511. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.J. Fractional derivative models for viscoelastic materials at finite deformations. Int. J. Solids Struct. 2020, 190, 226–237. [Google Scholar] [CrossRef]
- Hernández-Balaguera, E.; López-Dolado, E.; Polo, J.L. In vivo rat spinal cord and striated muscle monitoring using the current interruption method and bioimpedance measurements. J. Electrochem. Soc. 2018, 165, G3099. [Google Scholar] [CrossRef]
- Ionescu, C.; Lopes, A.; Copot, D.; Machado, J.T.; Bates, J.H. The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. 2017, 51, 141–159. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 2004, 32, 1–104. [Google Scholar] [CrossRef] [Green Version]
- Marinangeli, L.; Alijani, F.; HosseinNia, S.H. Fractional-order positive position feedback compensator for active vibration control of a smart composite plate. J. Sound Vib. 2018, 412, 1–16. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, J.; Zhang, J. A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures. Fract. Calc. Appl. Anal. 2013, 16, 76–92. [Google Scholar] [CrossRef]
- Tarasova, V.V.; Tarasov, V.E. Economic interpretation of fractional derivatives. Prog. Fract. Differ. Appl. 2017, 3, 1–6. [Google Scholar] [CrossRef]
- Zhang, D.; Allagui, A.; Elwakil, A.S.; Nassef, A.M.; Rezk, H.; Cheng, J.Q.; Choyi, W.C.H. On the modeling of dispersive transient photocurrent response of organic solar cells. Org. Electron. 2019, 70, 42–47. [Google Scholar] [CrossRef]
- Hernández-Balaguera, E.; Romero, B.; Arredondo, B.; del Pozo, G.; Najafi, M.; Galagan, Y. The dominant role of memory-based capacitive hysteretic currents in operation of photovoltaic perovskites. Nano Energy 2020, 78, 105398. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Zhao, M.; He, S.; Wang, H.; Qin, G. An integrated fractional partial differential equation and molecular dynamics model of anomalously diffusive transport in heterogeneous nano-pore structures. J. Comput. Phys. 2018, 373, 1000–1012. [Google Scholar] [CrossRef]
- Dehghan, M.; Abbaszadeh, M.; Mohebbi, A. An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein–Gordon equations. Eng. Anal. Bound. Elem. 2015, 50, 412–434. [Google Scholar] [CrossRef]
- Vong, S.; Wang, Z. A compact difference scheme for a two dimensional fractional Klein–Gordon equation with Neumann boundary conditions. J. Comput. Phys. 2014, 274, 268–282. [Google Scholar] [CrossRef]
- Sun, Z.Z.; Wu, X.N. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56, 193–209. [Google Scholar] [CrossRef]
- Du, R.; Cao, W.R.; Sun, Z.Z. A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 2010, 34, 2998–3007. [Google Scholar] [CrossRef]
- Li, C.P.; Zeng, F.H. Finite difference methods for fractional differential equations. Int. J. Bifurc. Chaos 2012, 22, 1230014. [Google Scholar] [CrossRef]
- Moghaddam, B.P.; Machado, J.A.T. SM-algorithms for approximating the variable-order fractional derivative of high order. Fund. Inform. 2017, 151, 293–311. [Google Scholar] [CrossRef]
- Ghafoor, A.; Haq, S.; Hussain, M.; Kuman, P.; Muhammad, A.J. Approximate solutions of time fractional diffusion wave models. Mathematics 2019, 7, 923. [Google Scholar] [CrossRef] [Green Version]
- Doha, E.H.; Bhrawy, A.H.; Ezz-Eldien, S.S. A new Jacobi operational matrix: An application for solving fractional differential equations. Appl. Math. Model. 2012, 36, 4931–4943. [Google Scholar] [CrossRef]
- Aziz, I.; Šarler, B. Wavelets collocation methods for the numerical solution of elliptic BV problems. Appl. Math. Model. 2013, 37, 676–694. [Google Scholar] [CrossRef]
- Liu, X.J.; Wang, J.Z.; Wang, X.M.; Zhou, Y.H. Exact solutions of multi-term fractional diffusion-wave equations with Robin type boundary conditions. Appl. Math. Mech. 2014, 35, 49–62. [Google Scholar] [CrossRef]
- Wang, J.Z.; Zhou, Y.H.; Gao, H.J. Computation of the Laplace inverse transform by application of the wavelet theory. Commun. Numer. Methods Eng. 2003, 19, 959–975. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Wang, X.M.; Wang, J.Z.; Liu, X.J. A wavelet numerical method for solving nonlinear fractional vibration, diffusion and wave equations. Comput. Model. Eng. Sci. 2011, 77, 137. [Google Scholar]
- Hou, Z.C.; Weng, J.; Liu, X.J.; Zhou, Y.H.; Wang, J.Z. A sixth-order wavelet integral collocation method for solving nonlinear boundary value problems in three dimensions. Acta Mech. Sin. 2022, 38, 421453. [Google Scholar] [CrossRef]
- Weng, J.; Liu, X.J.; Zhou, Y.H.; Wang, J.Z. A space-time fully decoupled wavelet integral collocation method with high-order accuracy for a class of nonlinear wave equations. Mathematics 2021, 9, 2957. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.Z.; Liu, X.J.; Zhou, Y.H. A wavelet integral collocation method for nonlinear boundary value problems in physics. Comput. Phys. Commun. 2017, 215, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Z.; Zhang, L.; Zhou, Y.H. A simultaneous space-time wavelet method for nonlinear initial boundary value problems. Appl. Math. Mech. 2018, 39, 1547–1566. [Google Scholar] [CrossRef]
- Zhou, Y.H. Wavelet Numerical Method and Its Applications in Nonlinear Problems; Springer: Berlin, Germany, 2021. [Google Scholar]
- Shukla, A.K.; Prajapati, J.C. On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 2007, 336, 797–811. [Google Scholar] [CrossRef]
- Mainardi, F. On some properties of the Mittag-Leffler function Eα(−tα), completely monotone for t > 0 with 0 < α < 1. Discrete Cont. Dyn. B. 2014, 19, 2267–2278. [Google Scholar]
- Kumar, A.; Bhardwaj, A. A local meshless method for time fractional nonlinear diffusion wave equation. Numer. Algorithms 2020, 85, 1311–1334. [Google Scholar] [CrossRef]
- Liu, X.J.; Liu, G.R.; Wang, J.Z.; Zhou, Y.H. A wavelet multiresolution interpolation Galerkin method for targeted local solution enrichment. Comput. Mech. 2019, 64, 989–1016. [Google Scholar] [CrossRef]
- Liu, X.J.; Liu, G.R.; Wang, J.Z.; Zhou, Y.H. A wavelet multi-resolution enabled interpolation Galerkin method for two-dimensional solids. Eng. Anal. Bound. Elem. 2020, 117, 251–268. [Google Scholar] [CrossRef]
α | Scheme 1 [8] (Δh = 1/20 Δt = 1/10,000) | Scheme 2 [8] (Δh = 1/20 Δt = 1/10,000) | Scheme 1 [8] (Δh = 1/10,000 Δt = 1/1280) | Scheme 2 [8] (Δh = 1/10,000 Δt = 1/1280) | WICM (Δh = 1/16 Δt ≈ 1/1000) |
---|---|---|---|---|---|
1.3 | 1.7 × 10−4 | 1.7 × 10−4 | 1.4 × 10−5 | 3.9 × 10−6 | 3.2 × 10−6 |
1.5 | 2.3 × 10−4 | 2.3 × 10−4 | 1.8 × 10−5 | 1.2 × 10−5 | 2.2 × 10−6 |
1.8 | 3.2 × 10−4 | 3.2 × 10−4 | 1.6 × 10−4 | 6.0 × 10−5 | 1.8 × 10−7 |
(x, t) | α = 1.1 | α = 1.3 | α = 1.5 | α = 1.7 | α = 1.9 |
---|---|---|---|---|---|
(1/8, 1/8) | 6.0 × 10−6 | 2.1 × 10−6 | 6.5 × 10−7 | 8.9 × 10−7 | 3.7 × 10−6 |
(2/8, 2/8) | 1.6 × 10−5 | 5.1 × 10−6 | 1.4 × 10−6 | 1.9 × 10−6 | 1.0 × 10−5 |
(3/8, 3/8) | 2.4 × 10−5 | 7.0 × 10−6 | 1.7 × 10−6 | 2.3 × 10−6 | 1.5 × 10−5 |
(4/8, 4/8) | 2.8 × 10−5 | 7.5 × 10−6 | 1.6 × 10−6 | 1.9 × 10−6 | 1.5 × 10−5 |
(5/8, 5/8) | 2.6 × 10−5 | 6.5 × 10−6 | 1.2 × 10−6 | 1.1 × 10−6 | 1.1 × 10−5 |
(6/8, 6/8) | 2.0 × 10−5 | 4.7 × 10−6 | 7.5 × 10−7 | 3.9 × 10−7 | 5.3 × 10−5 |
(7/8, 7/8) | 1.1 × 10−5 | 2.4 × 10−6 | 3.3 × 10−7 | 1.8 × 10−8 | 1.1 × 10−6 |
t | α = 0.7 | α = 0.9 | ||
---|---|---|---|---|
L∞ | RMS | L∞ | RMS | |
0.25 | 6.4 × 10−6 | 1.8 × 10−5 | 1.6 × 10−5 | 4.1 × 10−5 |
0.5 | 5.7 × 10−6 | 1.6 × 10−5 | 1.2 × 10−5 | 3.1 × 10−5 |
0.75 | 5.0 × 10−6 | 1.4 × 10−5 | 2.5 × 10−6 | 7.0 × 10−6 |
1 | 2.1 × 10−5 | 4.5 × 10−5 | 4.3 × 10−6 | 1.2 × 10−5 |
α | Case 1 | Case 2 | ||||
---|---|---|---|---|---|---|
L-FDM [15] ∆h = 1/80 Δt = 0.001 | C-FDM [15] ∆h= 1/160 Δt = 0.001 | WICM ∆h = 1/16 Δt ≈ 0.001 | L-FDM [15] ∆h = 1/80 Δt = 0.001 | C-FDM [15] ∆h = 1/160 Δt = 0.001 | WICM ∆h = 1/16 Δt ≈ 0.001 | |
1.2 | 6.7 × 10−5 | 1.7 × 10−5 | 4.0 × 10−5 | 1.5 × 10−4 | 3.5 × 10−5 | 2.6 × 10−5 |
1.5 | 8.1 × 10−5 | 2.0 × 10−5 | 7.9 × 10−5 | 1.4 × 10−4 | 3.3 × 10−5 | 1.1 × 10−5 |
1.8 | 1.0 × 10−4 | 2.5 × 10−5 | 1.2 × 10−5 | 1.6 × 10−4 | 4.0 × 10−5 | 1.5 × 10−5 |
α | Case 1 | Case 2 | ||||||
---|---|---|---|---|---|---|---|---|
L-FDM [15] ∆t = 1/1000 ∆h = 1/20 | C-FDM [15] ∆t = 1/5000 ∆h = 1/20 | WICM ∆t = 1/512 ∆h = 1/16 | WICM ∆t = 1/4096 ∆h = 1/16 | L-FDM [15] ∆t = 1/1000 ∆h = 1/20 | C-FDM [15] ∆t = 1/5000 ∆h = 1/20 | WICM ∆t = 1/512 ∆h = 1/16 | WICM ∆t = 1/4096 ∆h = 1/16 | |
1.2 | 1.1 × 10−3 | 3.3 × 10−6 | 8.9 × 10−5 | 2.2 × 10−6 | 2.4 × 10−3 | 7.1 × 10−6 | 5.9 × 10−5 | 4.8 × 10−6 |
1.5 | 1.3 × 10−3 | 3.9 × 10−6 | 2.2 × 10−5 | 8.9 × 10−7 | 2.3 × 10−3 | 6.8 × 10−6 | 1.8 × 10−6 | 8.4 × 10−8 |
1.8 | 1.7 × 10−3 | 5.0 × 10−6 | 4.3 × 10−5 | 1.0 × 10−7 | 2.7 × 10−3 | 8.0 × 10−6 | 1.9 × 10−6 | 4.3 × 10−8 |
∆t(∆h = 1/16) | α = 1.25 | α = 1.75 | |||
---|---|---|---|---|---|
L∞ | RMS | L∞ | RMS | ||
Case 1 | 1/28 | 2.6 × 10−4 | 1.9 × 10−4 | 6.9 × 10−5 | 4.0 × 10−5 |
1/210 | 4.7 × 10−5 | 3.4 × 10−5 | 1.1 × 10−5 | 6.2 × 10−6 | |
1/212 | 8.5 × 10−6 | 6.0 × 10−6 | 1.8 × 10−6 | 1.0 × 10−6 | |
Case 2 | 1/28 | 2.6 × 10−4 | 1.9 × 10−4 | 7.4 × 10−5 | 4.3 × 10−5 |
1/210 | 4.7 × 10−5 | 3.4 × 10−5 | 1.2 × 10−5 | 6.7 × 10−5 | |
1/212 | 8.5 × 10−6 | 6.0 × 10−6 | 1.9 × 10−6 | 1.1 × 10−6 |
∆h | α = 1.3 | α = 1.5 | α = 1.7 | α = 1.9 | |
---|---|---|---|---|---|
L∞ | L∞ | L∞ | L∞ | ||
Case 1 | 1/16 | 2.0 × 10−4 | 6.9 × 10−5 | 5.9 × 10−5 | 1.4 × 10−4 |
1/32 | 3.4 × 10−5 | 8.6 × 10−6 | 8.1 × 10−6 | 2.9 × 10−5 | |
1/64 | 5.7 × 10−6 | 1.1 × 10−6 | 1.2 × 10−6 | 6.4 × 10−6 | |
Case 2 | 1/16 | 2.0 × 10−4 | 6.9 × 10−5 | 5.5 × 10−5 | 1.4 × 10−4 |
1/32 | 3.4 × 10−5 | 8.6 × 10−6 | 7.6 × 10−6 | 2.2 × 10−5 | |
1/64 | 5.7 × 10−6 | 1.1 × 10−6 | 1.1 × 10−6 | 4.8 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, J.; Liu, X.; Zhou, Y.; Wang, J. An Explicit Wavelet Method for Solution of Nonlinear Fractional Wave Equations. Mathematics 2022, 10, 4011. https://doi.org/10.3390/math10214011
Weng J, Liu X, Zhou Y, Wang J. An Explicit Wavelet Method for Solution of Nonlinear Fractional Wave Equations. Mathematics. 2022; 10(21):4011. https://doi.org/10.3390/math10214011
Chicago/Turabian StyleWeng, Jiong, Xiaojing Liu, Youhe Zhou, and Jizeng Wang. 2022. "An Explicit Wavelet Method for Solution of Nonlinear Fractional Wave Equations" Mathematics 10, no. 21: 4011. https://doi.org/10.3390/math10214011
APA StyleWeng, J., Liu, X., Zhou, Y., & Wang, J. (2022). An Explicit Wavelet Method for Solution of Nonlinear Fractional Wave Equations. Mathematics, 10(21), 4011. https://doi.org/10.3390/math10214011