Fractional Systems’ Identification Based on Implicit Modulating Functions
Abstract
:1. Introduction
2. Preliminaries
2.1. Fundamentals of Fractional Calculus
- Uninitialized Fractional Integral
- Initialized Fractional Integral
- Uninitialized Riemann-Liouville Fractional Derivative
- Uninitialized Caputo Fractional Derivative
- Initialized Fractional Derivative
2.2. Fractional-Order Models
3. Parameter-Specific Identification Using Modulating Function Method
3.1. Fractional Modulating Function Method
3.2. Parameter-Specific Modulating Function
4. Model-Based Auxiliary System
4.1. Notations for the Model-Based Auxiliary System
4.2. Model-Based Auxiliary System
5. Implicit Determination of the Modulating Function
5.1. Control-Based Identification
5.2. Analysis of the Identification Error
6. Numerical Example
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
C | Caputo |
GL | Grünwald-Letnikov |
RL | Riemann-Liouville |
Appendix A. Right-Sided Definitions of Fundamentals
- Initialized Right-Sided Fractional Integral
- Uninitialized Right-Sided Riemann-Liouville Fractional Derivative
- Uninitialized Right-Sided Caputo Fractional Derivative
- Initialized Right-Sided Fractional Derivative
Appendix B. Error Minimization with Energy-Optimal Control
Appendix C. Controllability of the Model-Based Auxiliary System
References
- Cesarano, C. Generalized special functions in the description of fractional diffusive equations. Commun. Appl. Ind. Math. 2019, 10, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Bin-Mohsin, B.; Rafique, S.; Cesarano, C.; Javed, M.Z.; Awan, M.U.; Kashuri, A.; Noor, M.A. Some General Fractional Integral Inequalities Involving LR-Bi-Convex Fuzzy Interval-Valued Functions. Fractal Fract. 2022, 6, 565. [Google Scholar] [CrossRef]
- Ospina Agudelo, B.; Zamboni, W.; Monmasson, E. A Comparison of Time-Domain Implementation Methods for Fractional-Order Battery Impedance Models. Energies 2021, 14, 4415. [Google Scholar] [CrossRef]
- Singh, J. Analysis of fractional blood alcohol model with composite fractional derivative. Chaos Solitons Fractals 2020, 140, 110127. [Google Scholar] [CrossRef]
- Kanth, A.S.V.R.; Garg, N. Computational Simulations for Solving a Class of Fractional Models via Caputo-Fabrizio Fractional Derivative. Procedia Comput. Sci. 2017, 125, 476–482. [Google Scholar] [CrossRef]
- Allafi, W.; Zajic, I.; Burnham, K.J. Identification of Fractional Order Models: Application to 1D Solid Diffusion System Model of Lithium Ion Cell. In Progress in Systems Engineering; Selvaraj, H., Zydek, D., Chmaj, G., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 63–68. [Google Scholar]
- Aldoghaither, A.; Liu, D.Y.; Laleg-Kirati, T.M. Modulating Functions Based Algorithm for the Estimation of the Coefficients and Differentiation Order for a Space-Fractional Advection-Dispersion Equation. SIAM J. Sci. Comput. 2015, 37, A2813–A2839. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Wei, Y.; Hu, Y.; Wang, Y. Modulating Function-Based Identification for Fractional Order Systems. Neurocomputing 2016, 173, 1959–1966. [Google Scholar] [CrossRef]
- Eckert, M.; Kupper, M.; Hohmann, S. Functional Fractional Calculus for System Identification of Battery Cells. At–Automatisierungstechnik 2014, 62, 272–281. [Google Scholar] [CrossRef]
- Gao, Z. Modulating Function-Based System Identification for a Fractional-Order System with a Time Delay Involving Measurement Noise Using Least-Squares Method. Int. J. Syst. Sci. 2017, 48, 1460–1471. [Google Scholar] [CrossRef]
- Liu, D.Y.; Laleg-Kirati, T.; Gibaru, O.; Perruquetti, W. Identification of Fractional Order Systems Using Modulating Functions Method. In Proceedings of the American Control Conference (ACC), Washington, DC, USA, 7–19 June 2013; pp. 1679–1684. [Google Scholar]
- Stark, O.; Kupper, M.; Krebs, S.; Hohmann, S. Online Parameter Identification of a Fractional Order Model. In Proceedings of the 57th IEEE Conference on Decision and Control (CDC), Miami, FL, USA, 17–19 December 2018; pp. 2303–2309. [Google Scholar]
- Lu, Y.; Zhang, J.; Tang, Y.G. Parameter Identification of Fractional Order Systems Using a Collocation Method Based on Hybrid Functions. J. Dyn. Syst. Meas. Control 2020, 142, 081007. [Google Scholar] [CrossRef]
- Zhang, B.; Tang, Y.; Zhang, X.; Zhang, C. Parameter Identification of Fractional Order Systems Using a Hybrid of Bernoulli Polynomials and Block Pulse Functions. IEEE Access 2021, 9, 40178–40186. [Google Scholar] [CrossRef]
- Janiczek, T. Generalization of the Modulating Functions Method into the Fractional Differential Equations. Bull. Pol. Acad. Sci. Tech. Sci. 2010, 58, 593–599. [Google Scholar] [CrossRef]
- Schmid, C.; Roppenecker, G. Parameteridentifikation für LTI-Systeme mit Hilfe signalmodellgenerierter Modulationsfunktionen. At–Automatisierungstechnik 2011, 59, 521–528. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, 1st ed.; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Lorenzo, C.F.; Hartley, T.T. Initialized Fractional Calculus; Technical Report; NASA Glenn Research Center: Cleveland, OH, USA, 2000. [Google Scholar]
- Eckert, M.; Kölsch, L.; Hohmann, S. Fractional Algebraic Identification of the Distribution of Relaxation Times of Battery Cells. In Proceedings of the 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 15–18 December 2015; pp. 2101–2108. [Google Scholar]
- Almeida, R.; Malinowska, A.B.; Torres, D.F.M. A Fractional Calculus of Variations for Multiple Integrals with Application to Vibrating String. J. Math. Phys. 2010, 51, 033503-1–033503-12. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, C.F.; Hartley, T.T. Initialization, Conceptualization, and Application in the Generalized (Fractional) Calculus. Crit. Rev. Biomed. Eng. 1998, 35, 447–553. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, UK, 1998. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications, 1st ed.; CRC Press: Basel, Switzerland; Philadelphia, PA, USA, 1993. [Google Scholar]
- Isermann, R.; Münchhof, M. Identification of Dynamic Systems: An Introduction with Applications; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Stark, O.; Karg, P.; Hohmann, S. Iterative Method for Online Fractional Order and Parameter Identification. In Proceedings of the 2020 59th IEEE Conference on Decision and Control (CDC), Jeju, Korea, 14–18 December 2020; pp. 5159–5166. [Google Scholar]
- Victor, S.; Malti, R.; Garnier, H.; Oustaloup, A. Parameter and Differentiation Order Estimation in Fractional Models. Automatica 2013, 49, 926–935. [Google Scholar] [CrossRef]
- Shinbrot, M. On the Analysis of Linear and Nonlinear Dynamical Systems from Transient-Response Data; Technical Report; National Advisory Committee for Aeronautics: Moffett Field, CA, USA, 1954. [Google Scholar]
- Eckert, M.; Nagatou-Plum, K.; Rey, F.; Stark, O.; Hohmann, S. Controllability and Energy-Optimal Control of Time-Variant Fractional Systems. In Proceedings of the 57th IEEE Conference on Decision and Control (CDC), Miami, FL, USA, 17–19 December 2018; pp. 4607–4612. [Google Scholar]
- Podlubny, I.; Chechkin, A.V.; Skovranek, T.; Chen, Y.; Jara, B.M.V. Matrix Approach to Discrete Fractional Calculus II: Partial Fractional Differential Equations. J. Comput. Phys. 2009, 228, 3137–3153. [Google Scholar] [CrossRef]
- Bronštejn, I.N.; Semendjaev, K.A.; Musiol, G.; Mühlig, H. Handbook of Mathematics, 6th ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015. [Google Scholar]
- Kailath, T. Linear Systems; Prentice-Hall: Englewood Cliffs, NJ, USA, 1980. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stark, O.; Eckert, M.; Malan, A.J.; Hohmann, S. Fractional Systems’ Identification Based on Implicit Modulating Functions. Mathematics 2022, 10, 4106. https://doi.org/10.3390/math10214106
Stark O, Eckert M, Malan AJ, Hohmann S. Fractional Systems’ Identification Based on Implicit Modulating Functions. Mathematics. 2022; 10(21):4106. https://doi.org/10.3390/math10214106
Chicago/Turabian StyleStark, Oliver, Marius Eckert, Albertus Johannes Malan, and Sören Hohmann. 2022. "Fractional Systems’ Identification Based on Implicit Modulating Functions" Mathematics 10, no. 21: 4106. https://doi.org/10.3390/math10214106
APA StyleStark, O., Eckert, M., Malan, A. J., & Hohmann, S. (2022). Fractional Systems’ Identification Based on Implicit Modulating Functions. Mathematics, 10(21), 4106. https://doi.org/10.3390/math10214106