Exploration of Multiple Transfer Phenomena within Viscous Fluid Flows over a Curved Stretching Sheet in the Co-Existence of Gyrotactic Micro-Organisms and Tiny Particles
Abstract
:1. Introduction
2. Problem Formulation
- -
- The present bio-convective flow is related to a dilute non-homogeneous mixture.
- -
- The studied mixture behaves as an electrically conducting Newtonian media.
- -
- The constituents of the nanofluidic medium are in thermal equilibrium.
- -
- The present MHD non-homogeneous flow is developed in the laminar regime.
- -
- The main governing equations are derived accordingly based on the boundary layer approximations by combining a known non-homogeneous nanofluid model with the conservation equation of gyrotactic micro-organisms.
- -
- As long as the classical formulation of Buongiorno’s approach [42] is adopted as a suitable model to describe the present non-homogeneous nanofluid flow, the thermophysical expressions of the nanofluid (i.e., density, viscosity, heat capacitance, thermal conductivity, and electrical conductivity) should not be mentioned, because they are included implicitly in the control flow parameters. Therefore, the effects of nanoparticles’ shape and initial volume fraction can be excluded from this investigation.
- -
- In most practical studies, the nanoparticles are prepared in a spherical form.
- -
- Joule heating, Hall current effect, magnetic induction phenomenon, and viscous dissipation are ignored in this investigation as physical constraints.
3. Validation
4. Results and Discussion
4.1. Curvature Parameter Effects
4.2. Magnetic Parameter Effects
4.3. Slip Parameter Effects
4.4. Prandtl Number Effects
4.5. Thermophoresis and Brownian Motion Parameter Effects
4.6. Schmidt and Peclet Number Effects
4.7. Effects of Various Parameters on Motile Microorganisms’ Number
5. Conclusions
- The curvature parameter reduces the profiles of velocity temperature concentration and concentration of motile micro-organisms and their respective boundary layer thicknesses.
- There is a rise in the profiles of temperature concentration , and concentration of motile micro-organisms , along with a decrement in the velocity profile as the magnetic parameter is increased. A similar trend is noticed for the slip parameter.
- The profiles of temperature and concentration tend to diminish due to the impact of the Prandtl number.
- The Brownian motion has opposite effects on the profiles of the temperature (i.e., increasing function) and concentration (i.e., decreasing function). However, the thermophoresis parameter rises the temperature and concentration distributions.
- The increasing values of Schmidt and bio-convection Schmidt numbers decrease the profiles of concentration and concentration of motile micro-organisms .
- The augmenting values of the Peclet number improve significantly the profile of motile micro-organisms’ concentration .
- The motile micro-organisms’ number is reduced with the increasing values of the Brownian motion parameter, the thermophoresis parameter, and the Peclet number, whereas it enhances with the bio-convection Schmidt number.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BL | Boundary Layer |
MBL | Momentum Boundary Layer |
TBL | Thermal Boundary Layer |
CBL | Concentration Boundary Layer |
MMBL | Motile Micro-organisms’ Boundary Layer |
Nomenclature
Alphabets | |
Curvature parameter | |
Stretching rate constant | |
Chemotaxis constant | |
Concentration characteristics | |
Specific heat capacity | |
Skin friction coefficient | |
Brownian diffusion coefficient | |
Thermophoresis diffusion coefficient | |
Motile micro-organisms’ diffusion coefficient | |
Dimensionless nanofluid velocity components | |
Thermal conductivity | |
Magnetic parameter | |
Local motile micro-organisms’ number | |
Motile micro-organisms’ concentration characteristics | |
Brownian motion parameter | |
Thermophoresis parameter | |
Local Nusselt number | |
Pressure | |
Dimensionless pressure | |
Bio-convective Peclet number | |
Prandtl number | |
Wall heat flux | |
Wall mass flux | |
Wall motile micro-organisms flux | |
Radius of curvature | |
Reynolds number | |
Curvilinear coordinates | |
Bio-convective Schmidt number | |
Schmidt number | |
Local Sherwood number | |
Temperature characteristics | |
Stretching sheet velocity | |
velocity components | |
Maximum cell speed | |
Greek Letters | |
Slip length | |
Slip parameter | |
Nanofluid’s electrical conductivity | |
Nanofluid’s density | |
Nanofluid’s kinematic viscosity | |
Nanofluid’s dynamic viscosity | |
Surface shear stress | |
Non-dimensional nanofluid temperature | |
Non-dimensional nanofluid concentration | |
Non-dimensional motile micro-organisms’ concentration | |
Similarity variable | |
Subscripts | |
Ordinary differentiation of w.r.t |
References
- Hady, F.M.; Mahdy, A.; Mohamed, R.A.; Zaid, O.A.A. Effects of viscous dissipation on unsteady MHD thermo bioconvection boundary layer flow of a nanofluid containing gyrotactic microorganisms along a stretching sheet. World J. Mech. 2016, 6, 505–526. [Google Scholar] [CrossRef] [Green Version]
- Pal, D.; Mondal, S.K. MHD nanofluid bioconvection over an exponentially stretching sheet in the presence of gyrotactic microorganisms and thermal radiation. BioNanoScience 2018, 8, 272–287. [Google Scholar] [CrossRef]
- Yasmin, A.; Ali, K.; Ashraf, M. Study of heat and mass transfer in MHD flow of micropolar fluid over a curved stretching sheet. Sci. Rep. 2020, 10, 4581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagaraja, B.; Gireesha, B.J. Exponential space-dependent heat generation impact on MHD convective flow of Casson fluid over a curved stretching sheet with chemical reaction. J. Therm. Anal. Calorim. 2021, 143, 4071–4079. [Google Scholar] [CrossRef]
- Haq, F.; Saleem, M.; UR Rahman, M. Investigation of natural bio-convective flow of Cross nanofluid containing gyrotactic microorganisms subject to activation energy and magnetic field. Phys. Scr. 2020, 95, 105219. [Google Scholar] [CrossRef]
- Koriko, O.K.; Shah, N.A.; Saleem, S.; Chung, J.D.; Omowaye, A.J.; Oreyeni, T. Exploration of bioconvection flow of MHD thixotropic nanofluid past a vertical surface coexisting with both nanoparticles and gyrotactic microorganisms. Sci. Rep. 2021, 11, 16627. [Google Scholar] [CrossRef]
- Nabwey, H.A.; El-Kabeir, S.M.M.; Rashad, A.M.; Abdou, M.M.M. Effectiveness of Magnetized Flow on Nanofluid Containing Gyrotactic Micro-Organisms over an Inclined Stretching Sheet with Viscous Dissipation and Constant Heat Flux. Fluids 2021, 6, 253. [Google Scholar] [CrossRef]
- Shah, N.A.; Wakif, A.; El-Zahar, E.R.; Ahmad, S.; Yook, S.-J. Numerical simulation of a thermally enhanced EMHD flow of a heterogeneous micropolar mixture comprising (60%)-ethylene glycol (EG), (40%)-water (W), and copper oxide nanomaterials (CuO). Case Stud. Therm. Eng. 2022, 35, 102046. [Google Scholar] [CrossRef]
- Kessler, J.O. Hydrodynamic focusing of motile algal cells. Nature 1985, 313, 218–220. [Google Scholar] [CrossRef]
- Lovecchio, S.; Zonta, F.; Marchioli, C.; Soldati, A. Thermal stratification hinders gyrotactic micro-organism rising in free-surface turbulence. Phys. Fluids 2017, 29, 053302. [Google Scholar] [CrossRef]
- Croze, O.A.; Sardina, G.; Ahmed, M.; Bees, M.A.; Brandt, L. Dispersion of swimming algae in laminar and turbulent channel flows: Consequences for photobioreactors. J. R. Soc. Interface 2013, 10, 20121041. [Google Scholar] [CrossRef] [PubMed]
- Durham, W.M.; Kessler, J.O.; Stocker, R. Disruption of vertical motility by shear triggers formation of thin phytoplankton layers. Science 2009, 323, 1067–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durham, W.M.; Climent, E.; Barry, M.; Lillo, F.D.; Boffetta, G.; Cencini, M.; Stocker, R. Turbulence drives microscale patches of motile phytoplankton. Nat. Commun. 2013, 4, 2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alharbi, F.M.; Naeem, M.; Zubair, M.; Jawad, M.; Jan, W.U.; Jan, R. Bioconvection Due to Gyrotactic Microorganisms in Couple Stress Hybrid Nanofluid Laminar Mixed Convection Incompressible Flow with Magnetic Nanoparticles and Chemical Reaction as Carrier for Targeted Drug Delivery through Porous Stretching Sheet. Molecules 2021, 26, 3954. [Google Scholar] [CrossRef]
- Mondal, S.K.; Pal, D. Computational analysis of bioconvective flow of nanofluid containing gyrotactic microorganisms over a nonlinear stretching sheet with variable viscosity using HAM. J. Comput. Des. Eng. 2020, 7, 251–267. [Google Scholar] [CrossRef] [Green Version]
- Kairi, R.R.; Shaw, S.; Roy, S.; Raut, S. Thermosolutal marangoni impact on bioconvection in suspension of gyrotactic microorganisms over an inclined stretching sheet. J. Heat Transf. 2021, 143, 031201. [Google Scholar] [CrossRef]
- Khan, M.N.; Nadeem, S. Theoretical treatment of bio-convective Maxwell nanofluid over an exponentially stretching sheet. Can. J. Phys. 2020, 98, 732–741. [Google Scholar] [CrossRef]
- Abdelmalek, Z.; Khan, S.U.; Waqas, H.; Riaz, A.; Khan, I.A.; Tlili, I. A mathematical model for bioconvection flow of Williamson nanofluid over a stretching cylinder featuring variable thermal conductivity, activation energy and second-order slip. J. Therm. Anal. Calorim. 2021, 144, 205–217. [Google Scholar] [CrossRef]
- Shafiq, A.; Lone, S.A.; Sindhu, T.N.; Al-Mdallal, Q.M.; Rasool, G. Statistical modeling for bioconvective tangent hyperbolic nanofluid towards stretching surface with zero mass flux condition. Sci. Rep. 2021, 11, 13869. [Google Scholar] [CrossRef]
- Chu, Y.-M.; ur Rahman, M.; Khan, M.I.; Kadry, S.; Rehman, W.U.; Abdelmalek, Z. Heat transport and bio-convective nanomaterial flow of Walter’s-B fluid containing gyrotactic microorganisms. Ain Shams Eng. J. 2021, 12, 3071–3079. [Google Scholar] [CrossRef]
- Xia, W.-F.; Haq, F.; Saleem, M.; Khan, M.I.; Khan, S.U.; Chu, Y.-M. Irreversibility analysis in natural bio-convective flow of Eyring-Powell nanofluid subject to activation energy and gyrotactic microorganisms. Ain Shams Eng. J. 2021, 12, 4063–4074. [Google Scholar] [CrossRef]
- Aneja, M.; Sharma, S.; Kuharat, S.; Beg, O.A. Computation of electroconductive gyrotactic bioconvection from a nonlinear inclined stretching sheet under nonuniform magnetic field: Simulation of smart bio-nanopolymer coatings for solar energy. Int. J. Mod. Phys. B 2020, 34, 2050028. [Google Scholar] [CrossRef]
- Magagula, V.M.; Shaw, S.; Kairi, R.R. Double dispersed bioconvective Casson nanofluid fluid flow over a nonlinear convective stretching sheet in suspension of gyrotactic microorganism. Heat Transf. 2020, 49, 2449–2471. [Google Scholar] [CrossRef]
- Manan, A.; Rehman, S.U.; Fatima, N.; Imran, M.; Ali, B.; Shah, N.A.; Chung, J.D. Dynamics of Eyring–Powell Nanofluids When Bioconvection and Lorentz Forces Are Significant: The Case of a Slender Elastic Sheet of Variable Thickness with Porous Medium. Mathematics 2022, 10, 3039. [Google Scholar] [CrossRef]
- Wang, C.Y. Flow due to a stretching boundary with partial slip-an exact solution of the Navier-Stokes equations. Chem. Eng. Sci. 2002, 57, 3745–3747. [Google Scholar] [CrossRef]
- Noghrehabadi, A.; Pourrajab, R.; Ghalambaz, M. Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. Int. J. Therm. Sci. 2012, 54, 253–261. [Google Scholar] [CrossRef]
- Rauf, A.; Mushtaq, A.; Shah, N.A.; Botmart, T. Heat transfer and hybrid ferrofluid flow over a nonlinearly stretchable rotating disk under the influence of an alternating magnetic field. Sci Rep. 2022, 12, 17548. [Google Scholar] [CrossRef]
- Hayat, T.; Khan, S.A.; Alsaedi, A.; Zai, Q.Z. Computational analysis of heat transfer in mixed convective flow of CNTs with entropy optimization by a curved stretching sheet. Int. Commun. Heat Mass Transf. 2020, 118, 104881. [Google Scholar] [CrossRef]
- Raza, R.; Mabood, F.; Naz, R. Entropy analysis of non-linear radiative flow of Carreau liquid over curved stretching sheet. Int. Commun. Heat Mass Transf. 2020, 119, 104975. [Google Scholar] [CrossRef]
- Madhukesh, J.K.; Kumar, R.N.; Gowda, R.J.P.; Prasannakumara, B.C.; Ramesh, G.K.; Khan, M.I.; Khan, S.U.; Chu, Y.-M. Numerical simulation of AA7072-AA7075/water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: A non-Fourier heat flux model approach. J. Mol. Liq. 2021, 335, 116103. [Google Scholar] [CrossRef]
- Gireesha, B.J.; Nagaraja, B.; Sindhu, S.; Sowmya, G. Consequence of exponential heat generation on non-Darcy-Forchheimer flow of water based carbon nanotubes driven by a curved stretching sheet. Appl. Math. Mech. 2020, 41, 1723–1734. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Abidi, A.; Ahmed, A.E.-S.; Khan, M.R.; El-Shorbagy, M.A.; Shutaywi, M.; Issakhov, A.; Galal, A.M. MHD stagnation point flow of nanofluid over curved stretching/shrinking surface subject to the influence of Joule heating and convective condition. Case Stud. Therm. Eng. 2021, 26, 101184. [Google Scholar] [CrossRef]
- Qian, W.-M.; Khan, M.I.; Shah, F.; Khan, M.; Chu, Y.-M.; Khan, W.A.; Nazeer, M. Mathematical Modeling and MHD Flow of Micropolar Fluid Toward an Exponential Curved Surface: Heat Analysis via Ohmic Heating and Heat Source/Sink. Arab. J. Sci. Eng. 2021, 47, 867–878. [Google Scholar] [CrossRef]
- Afsar Khan, A.; Batool, R.; Kousar, N. Examining the behavior of MHD micropolar fluid over curved stretching surface based on the modified Fourier law. Sci. Iran. 2021, 28, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.U.; Fatima, N.; Ali, B.; Imran, M.; Ali, L.; Shah, N.A.; Chung, J.D. The Casson Dusty Nanofluid: Significance of Darcy–Forchheimer Law, Magnetic Field, and Non-Fourier Heat Flux Model Subject to Stretch Surface. Mathematics 2022, 10, 2877. [Google Scholar] [CrossRef]
- Kempannagari, A.K.; Buruju, R.R.; Naramgari, S.; Vangala, S. Effect of Joule heating on MHD non-Newtonian fluid flow past an exponentially stretching curved surface. Heat Transf. 2020, 49, 3575–3592. [Google Scholar] [CrossRef]
- Asogwa, K.K.; Goud, B.S.; Shah, N.A.; Yook, S.-J. Rheology of electromagnetohydrodynamic tangent hyperbolic nanofluid over a stretching riga surface featuring dufour effect and activation energy. Sci Rep. 2022, 14602. [Google Scholar] [CrossRef]
- Rasool, G.; Shah, N.A.; El-Zahar, E.R.; Wakif, A. Numerical investigation of EMHD nanofluid flows over a convectively heated riga pattern positioned horizontally in a Darcy-Forchheimer porous medium: Application of passive control strategy and generalized transfer laws. Waves Random Complex Media 2022, 1–20. [Google Scholar] [CrossRef]
- Ardekani, A.M.; Doostmohammadi, A.; Desai, N. Transport of particles, drops, and small organisms in density stratified fluids. Phys. Rev. Fluids 2017, 2, 100503. [Google Scholar] [CrossRef]
- Lillo, D.F.; Cencini, M.; Durham, W.M.; Barry, M.; Stocker, R.; Climent, E.; Boffetta, G. Turbulent fluid acceleration generates clusters of gyrotactic microorganisms. Phys. Rev. Lett. 2014, 112, 044502. [Google Scholar] [CrossRef]
- Zeng, L.; Pedley, T.J. Distribution of gyrotactic micro-organisms in complex three-dimensional flows. Part 1. Horizontal shear flow past a vertical circular cylinder. J. Fluid Mech. 2018, 852, 358–397. [Google Scholar] [CrossRef]
- Buongiorno, J. Convective Transport in Nanofluids. J. Heat Transf. 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Sokolov, A.; Goldstein, R.E.; Feldchtein, F.I.; Aranson, I.S. Enhanced mixing and spatial instability in concentrated bacterial suspensions. Phys. Rev. E 2009, 80, 031903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, T.-H.; Liou, D.-S.; Kuo, L.-S.; Chen, P.-H. Rapid mixing between ferro-nanofluid and water in a semi-active Y-type micromixer. Sens. Actuators A Phys. 2009, 153, 267–273. [Google Scholar] [CrossRef]
- Uddin, M.J.; Khan, W.A.; Qureshi, S.R.; Beg, O.A. Bioconvection nanofluid slip flow past a wavy surface with applications in nano-biofuel cells. Chin. J. Phys. 2017, 55, 2048–2063. [Google Scholar] [CrossRef]
- Shaijumon, M.M.; Ramaprabhu, S.; Rajalakshmi, N. Platinum/multiwalled carbon nanotubes–platinum/carbon composites as electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cell. Appl. Phys. Lett. 2006, 88, 253105. [Google Scholar] [CrossRef] [Green Version]
- Naskar, S.; Sharma, S.; Kuotsu, K. Chitosan-based nanoparticles: An overview of biomedical applications and its preparation. J. Drug Deliv. Sci. Technol. 2019, 49, 66–81. [Google Scholar] [CrossRef]
Parameters | Expressions | Parameters | Expressions |
---|---|---|---|
Magnetic parameter | Brownian motion parameter | ||
Curvature parameter | Schmidt number | ||
Slip parameter | Bio-convective Schmidt number | ||
Prandtl Number | Bio-convective Peclet number | ||
Thermophoresis parameter | Dimensionless bio-convective factor | ||
Reynolds number | Dimensionless thermal factor |
[24] | [25] | [26] | [37] | Present Results | |
---|---|---|---|---|---|
0.0 | −1.0 | −1.0002 | −1.0011 | −1.0000 | −1.00068 |
0.1 | - | −0.8720 | −0.8714 | −0.8720 | −0.87262 |
0.2 | - | −0.7763 | −0.7749 | −0.7763 | −0.77682 |
0.3 | −0.701 | −0.7015 | −0.6997 | −0.7015 | −0.70193 |
0.5 | - | −0.5911 | −0.5891 | −0.5911 | −0.59149 |
1.0 | −0.430 | −0.4301 | −0.4284 | −0.4301 | −0.43034 |
2.0 | −0.284 | −0.2839 | −0.2828 | −0.2839 | −0.28407 |
3.0 | - | −0.2140 | −0.2133 | −0.2140 | −0.21412 |
5.0 | −0.145 | −0.1448 | −0.1444 | −0.1448 | −0.14487 |
10.0 | - | −0.0812 | −0.0810 | −0.0812 | −0.08125 |
20.0 | −0.0438 | −0.0437 | −0.0437 | −0.0437 | −0.04379 |
Parameters | Values | ||||
---|---|---|---|---|---|
0.5 | −0.685157 | 0.341839 | 1.173836 | 0.867494 | |
1.0 | −0.737808 | 0.247285 | 0.899088 | 0.583058 | |
1.5 | −0.761642 | 0.203697 | 0.790827 | 0.433161 | |
1.0 | −0.643659 | 0.312729 | 1.078490 | 0.876261 | |
1.5 | −0.612839 | 0.31028 | 1.076535 | 0.903080 | |
2.0 | −0.592397 | 0.310773 | 1.081319 | 0.922313 | |
1.0 | −0.685157 | 0.341839 | 1.173836 | 0.867494 | |
1.5 | −0.510308 | 0.284749 | 0.992354 | 0.696359 | |
2.0 | −0.406574 | 0.245495 | 0.880211 | 0.574382 | |
3.0 | −0.685157 | 0.353240 | 1.160884 | 0.870119 | |
4.0 | −0.685157 | 0.341839 | 1.173836 | 0.867494 | |
5.0 | −0.685157 | 0.320823 | 1.192109 | 0.863649 | |
0.2 | −0.685156 | 0.446899 | 1.079823 | 0.888697 | |
0.3 | −0.685157 | 0.341839 | 1.173836 | 0.867494 | |
0.4 | −0.685157 | 0.258463 | 1.211724 | 0.858719 | |
0.2 | −0.685157 | 0.341839 | 1.173836 | 0.867494 | |
0.3 | −0.685157 | 0.299689 | 1.172226 | 0.869968 | |
0.4 | −0.685157 | 0.264082 | 1.179707 | 0.870639 | |
5.0 | −0.685156 | 0.360332 | 1.033888 | 0.898135 | |
5.5 | −0.685157 | 0.350414 | 1.106071 | 0.882278 | |
6.0 | −0.685157 | 0.341839 | 1.173836 | 0.867494 | |
5.0 | −0.685157 | 0.341839 | 1.173836 | 0.730776 | |
5.5 | −0.685157 | 0.341839 | 1.173836 | 0.801320 | |
6.0 | −0.685157 | 0.341839 | 1.173836 | 0.867494 | |
0.2 | −0.685157 | 0.341838 | 1.173835 | 0.507114 | |
0.4 | −0.685157 | 0.341838 | 1.173834 | −0.246490 | |
0.6 | −0.685157 | 0.341838 | 1.173834 | −1.053887 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragupathi, P.; Ahammad, N.A.; Wakif, A.; Shah, N.A.; Jeon, Y. Exploration of Multiple Transfer Phenomena within Viscous Fluid Flows over a Curved Stretching Sheet in the Co-Existence of Gyrotactic Micro-Organisms and Tiny Particles. Mathematics 2022, 10, 4133. https://doi.org/10.3390/math10214133
Ragupathi P, Ahammad NA, Wakif A, Shah NA, Jeon Y. Exploration of Multiple Transfer Phenomena within Viscous Fluid Flows over a Curved Stretching Sheet in the Co-Existence of Gyrotactic Micro-Organisms and Tiny Particles. Mathematics. 2022; 10(21):4133. https://doi.org/10.3390/math10214133
Chicago/Turabian StyleRagupathi, Pachiyappan, N. Ameer Ahammad, Abderrahim Wakif, Nehad Ali Shah, and Yongseok Jeon. 2022. "Exploration of Multiple Transfer Phenomena within Viscous Fluid Flows over a Curved Stretching Sheet in the Co-Existence of Gyrotactic Micro-Organisms and Tiny Particles" Mathematics 10, no. 21: 4133. https://doi.org/10.3390/math10214133
APA StyleRagupathi, P., Ahammad, N. A., Wakif, A., Shah, N. A., & Jeon, Y. (2022). Exploration of Multiple Transfer Phenomena within Viscous Fluid Flows over a Curved Stretching Sheet in the Co-Existence of Gyrotactic Micro-Organisms and Tiny Particles. Mathematics, 10(21), 4133. https://doi.org/10.3390/math10214133