Employing Quantum Fruit Fly Optimization Algorithm for Solving Three-Dimensional Chaotic Equations
Abstract
:1. Introduction
1.1. Problem Statement and Motivation
1.2. Contribution and Methodology
2. Background and Related Work
2.1. Preliminaries
2.1.1. Chaos Theory
- Sensitive to initial conditions—each point in a system is arbitrarily near other points with drastically different behavior. Qualitatively, two paths with a starting separation δX0 diverge.
- Topological mixing—implies system evolution, so that every area or open set of its phase space will overlap. This assumption has profound implications for one-dimensional systems.
- Periodic orbit density—each space point is arbitrarily near periodic orbits and is regular. Not meeting this requirement may prevent topological mixing systems from becoming chaotic. In chaos theory, the butterfly effect is the sensitivity of a system to starting conditions. Small changes in a dynamical system’s starting state may have huge long-term effects. Time makes such systems unpredictable.
2.1.2. Lyapunov Exponents
2.1.3. Chaos Synchronization
- 1.
- Complete Synchronization
- 2.
- Anti-Phase Synchronization
- 3.
- Projective Synchronization
2.1.4. Chaotic Maps
- 1.
- Chen Chaotic System
- 2.
- Rossler Chaotic System
- 3.
- Henon Chaotic System
2.1.5. Quantum Fruit Fly Optimization Algorithm
- (1)
- The random initial position of a fruit fly. Init X_axis; Init Y_axis.
- (2)
- A fruit fly’s sense of smell searches randomly for food.
- (3)
- As the food’s location is unknown, the distance (Dist) to the origin is inferred before calculating the decision value of smell concentration (S).
- (4)
- The smell concentration decision value (S) is inserted in the Fitness function to calculate the fruit fly’s Smelli.
- (5)
- Determine the fruit fly swarm’s strongest smell (seek for the maximum value)
- (6)
- Using the best smell concentration and x, y coordinates, the fruit fly swarm flies to the position.
- (7)
- If the smell concentration is better than the previous iteration of smell concentration, execute Step 6.
2.2. Related Work
3. Materials and Methods
3.1. At the Transmitter Side
3.2. On the Receiver Side
- -
- These solutions were input to a predefined chaotic receiver system. The RK4 was used in the 3D Lorenz equations to create chaotic signals (one for each fruit fly).
- -
- Each fly determined food concentration using the mean square error between the predicted chaotic signal and the downsampled received signal (smelling process).
- -
- Each fly shared its position with others. The flies compared their solutions to choose the best one.
- -
- Flies migrated to the solution with the lowest fitness value, which became the new best solution (vision process).
4. Results
4.1. Experiment 1: Comparison with Existing Methods
4.2. Experiment 2: Effect of QFOA Iteration
4.3. Experiment 3: Effect of Number of Swarms
4.4. Experiment 4: Influence of the Data Sampling W
4.5. Experiment 5: Comparison with another Quantum Metaheuristic Algorithm
4.6. Experiment 6: Estimation Accuracy with Different Chaotic Systems
4.7. Industrial Application Case: Financial Chaotic System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shukla, P.; Khare, A.; Rizvi, M.; Stalin, S.; Kumar, S. Applied Cryptography Using Chaos Function for Fast Digital Logic-Based Systems in Ubiquitous Computing. Entropy 2015, 17, 1387–1410. [Google Scholar] [CrossRef] [Green Version]
- Sadkhan, S.; Al-Sherbaz, A.; Mohammed, R. Chaos based Cryptography for Voice Encryption in Wireless Communication. In Proceedings of the First International Conference of Electrical, Communication, Computer, Power and Control Engineering, Mosul, Iraq, 17–18 December 2013; pp. 191–197. [Google Scholar]
- Mondal, B.; Mandal, T. A Multilevel Security Scheme using Chaos based Encryption and Steganography for Secure Audio Communication. Int. J. Res. Eng. Technol. 2013, 2, 399–403. [Google Scholar]
- Fadhel, S.; Shafry, M.; Farook, O. Chaos Image Encryption Methods: A Survey Study. Bull. Electr. Eng. Inform. 2017, 6, 99–104. [Google Scholar] [CrossRef]
- Pecora, L.; Carroll, T. Synchronization of Chaotic Systems Chaos: An Interdisciplinary. J. Nonlinear Sci. 2015, 25, 097611. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H. Chaos Synchronization and Its Application to Secure Communication. Ph.D. Dissertation, Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, USA, 2010. [Google Scholar]
- Shewale, G.; Shinde, N.; Shirode, A.; Singh, S.; Solanki, J.; Tajane, M.; Tripathi, G. Chaos Theory Technical Report-60; Sardar Patel Institute of Technology: Mumbai, India, 2012; pp. 1–39. [Google Scholar]
- Yau, H.; Pu, Y.; Li, S. An FPGA-Based PID Controller Design for Chaos Synchronization by Evolutionary Programming. Discret. Dyn. Nat. Soc. 2011, 2011, 516031. [Google Scholar] [CrossRef]
- Rai, D.; Tyagi, K. Bio-Inspired Optimization Techniques—A Critical Comparative Study. ACM SIGSOFT Softw. Eng. Notes 2013, 38, 1–7. [Google Scholar] [CrossRef]
- Wahab, M.; Meziani, S.; Atyabi, A. A Comprehensive Review of Swarm Optimization Algorithms. PLoS ONE 2015, 10, e0122827. [Google Scholar] [CrossRef] [Green Version]
- Shan, D.; Cao, G.; Dong, H. LGMS-FOA: An Improved Fruit Fly Optimization Algorithm for Solving Optimization Problems. Math. Probl. Eng. 2013, 2013, 108768. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; Zhang, X.; Yu, J. Twin Support Vector Machines based on Fruit Fly Optimization Algorithm. Int. J. Mach. Learn. Cybern. 2016, 7, 193–203. [Google Scholar] [CrossRef]
- Li, S.; Xu, W.; Li, R.; Zhao, X. A General Method for Chaos Synchronization and Parameters Estimation between Different Systems. J. Sound Vib. 2007, 302, 777–788. [Google Scholar] [CrossRef]
- Niu, J.; Zhong, W.; Liang, Y.; Luo, N.; Qian, F. Fruit Fly Optimization Algorithm based on Differential Evolution and Its Application on Gasification Process Operation Optimization. Knowl. Based Syst. 2015, 88, 253–263. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, S.; Li, X. Quantum Behavior-Based Enhanced Fruit Fly Optimization Algorithm with Application to UAV Path Planning. Int. J. Comput. Intell. Syst. 2020, 13, 1315–1331. [Google Scholar] [CrossRef]
- Abdo, A.H. Optimized Chaotic Parameters Estimation Algorithm to Enhance the Synchronization of Wireless Communication Networks. Master Thesis, Alexandria University, Alexandria, Egypt, 2019. [Google Scholar]
- Cattani, M.; Caldas, I.; Souza, S.; Iarosz, K. Deterministic Chaos Theory: Basic Concepts. Rev. Bras. Ensino Física 2017, 39, 1315. [Google Scholar] [CrossRef] [Green Version]
- Fradkov, A.; Evans, R.; Andrievsky, B. Control of Chaos: Methods and Applications in Mechanics Philosophical Transactions of the Royal Society A: Mathematical. Phys. Eng. Sci. 2006, 364, 2279–2307. [Google Scholar]
- Gauthier, Y. The Construction of Chaos Theory. Found. Sci. 2009, 14, 153–165. [Google Scholar] [CrossRef]
- Ren, H.; Baptista, M.; Grebogi, C. Wireless Communication with Chaos. Phys. Rev. Lett. 2013, 110, 2–5. [Google Scholar] [CrossRef]
- Kamil, I.; Fakolujo, O. Lorenz-Based Chaotic Secure Communication Schemes. Ubiquitous Comput. Commun. J. 2015, 7, 1248–1254. [Google Scholar]
- Meador, C. Numerical Calculation of Lyapunov Exponents for Three Dimensional Systems of Ordinary Differential Equations. Master Thesis, Marshall Digital Scholar, Marshal University, Huntington, WV, USA, 2011. [Google Scholar]
- Pukdeboon, C. A Review of Fundamentals of Lyapunov Theory. J. Appl. Sci. 2011, 10, 55–61. [Google Scholar]
- Balibrea, F.; Caballero, M. Examples of Lyapunov Exponents in Two Dimensional Systems Nonlinear Maps and their Applications; Springer: New York, NY, USA, 2014; pp. 9–15. [Google Scholar]
- Bespalov, A.; Polyakhov, N. Determination of the Largest Lyapunov Exponents Based on Time Series. World Appl. Sci. 2013, 26, 157–164. [Google Scholar]
- Leonov, G.; Kuznetsov, N. On Differences and Similarities in the Analysis of Lorenz, Chen, and Lu Systems. Appl. Math. Comput. 2015, 256, 334–343. [Google Scholar] [CrossRef] [Green Version]
- Thanoon, T.; L-Azzawi, S.A. Stability of Lorenz Differential System by Parameters Tikrit. J. Pure Sci. 2010, 15, 118–222. [Google Scholar]
- Chenthittayil, S. Determination of Chaos in Different Dynamical Systems. Master Thesis, the Graduate School of Clemson University, Clemson, SC, USA, 2015. [Google Scholar]
- Kose, E.; Akcayoglu, A. Examination of the Eigenvalues Lorenz Chaotic System. Eur. Sci. J. 2014, 10, 114–121. [Google Scholar]
- Feketa, P.; Schaum, A.; Meurer, T. Synchronization and Multicluster Capabilities of Oscillatory Networks with Adaptive Coupling. IEEE Trans. Autom. Control 2020, 66, 3084–3096. [Google Scholar] [CrossRef]
- Gambuzza, L.; Frasca, M.; Latora, V. Distributed Control of Synchronization of a Group of Network Nodes. IEEE Trans. Autom. Control 2018, 64, 365–372. [Google Scholar] [CrossRef]
- Feketa, P.; Schaum, A.; Meurer, T.; Michaelis, D.; Ochs, K. Synchronization of Nonlinearly Coupled Networks of Chua Oscillators. IFAC-PapersOnLine 2019, 52, 628–633. [Google Scholar] [CrossRef]
- Ochs, K.; Michaelis, D.; Solan, E.; Feketa, P.; Schaum, A.; Meurer, T. Synthesis, Design, and Synchronization Analysis of Coupled Linear Electrical Networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 4521–4532. [Google Scholar] [CrossRef]
- George, G.; Raimond, K. A Survey on Optimization Algorithms for Optimizing the Numerical Functions. Int. J. Comput. Appl. 2013, 61, 41–46. [Google Scholar] [CrossRef]
- Li, X.; Yin, M. Parameter Estimation for Chaotic Systems by Hybrid Differential Evolution Algorithm and Artificial Bee Colony Algorithm. Nonlinear Dyn. 2014, 77, 61–71. [Google Scholar] [CrossRef]
- Jadon, S.; Tiwari, R.; Sharma, H.; Bansal, J. Hybrid Artificial Bee Colony Algorithm with Differential Evolution. Appl. Soft Comput. 2017, 58, 11–24. [Google Scholar] [CrossRef]
- Jessa, M. Designing Security for Number Sequences Generated by Means of the Sawtooth Chaotic Map. IEEE Trans. Circuits Syst. 2006, 53, 1140–1150. [Google Scholar] [CrossRef]
- Hao, D.; Xin, J.; Meng, H.; Quan, S. A New Three-Dimensional Chaotic System and Its Modified Generalized Projective Synchronization. Chin. Phys. B 2011, 20, 040507. [Google Scholar]
- Ding, Y.; Jiang, W.; Wang, H. Delayed Feedback Control and Bifurcation Analysis of Rossler Chaotic System. Nonlinear Dyn. 2010, 61, 707–715. [Google Scholar] [CrossRef]
- Abdmouleh, Z.; Gastli, A.; Brahim, L.; Haouari, M.; Al-Emadi, N. Review of Optimization Techniques Applied for the Integration of Distributed Generation from Renewable Energy Sources. Renew. Energy 2017, 113, 266–280. [Google Scholar] [CrossRef]
- Jiang, H.; Zhao, D.; Zheng, R.; Ma, X. Construction of Pancreatic Cancer Classifier Based on SVM Optimized by Improved FOA. BioMed Res. Int. 2015, 2015, 781023. [Google Scholar] [CrossRef] [Green Version]
- Pan, W. A New Fruit Fly Optimization Algorithm: Taking the Financial Distress Model as an Example. Knowl. Based Syst. 2012, 26, 69–74. [Google Scholar] [CrossRef]
- Yin, L.; Li, X.; Gao, L.; Lu, C. A New Improved Fruit Fly Optimization Algorithm for Traveling Salesman Problem. In Proceedings of the Eighth International Conference on Advanced Computational Intelligence, Chiang Mai, Thailand, 14–16 February 2016; pp. 21–28. [Google Scholar]
- Peng, Y.; Sun, K.; He, S.; Yang, X. Parameter Estimation of a Complex Chaotic System with Unknown Initial Values. Eur. Phys. J. Plus 2018, 133, 305. [Google Scholar] [CrossRef]
- Lazzus, J.; Rivera, M.; Caraballo, C. Parameter Estimation of Lorenz Chaotic System using a Hybrid Swarm Intelligence Algorithm. Phys. Lett. A 2016, 380, 1164–1171. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, J.; Wu, X.; Fang, W.; Cai, Y.; Xu, W. Parameter Estimation for Chaotic Systems with a Drift Particle Swarm Optimization Method. Phys. Lett. A 2010, 374, 2816–2822. [Google Scholar] [CrossRef]
- Qiang, L.; Wei, P.; Shan, Y.; Bin, L.; Feng, X.; Ning, J. Parameter Estimation for Chaotic Systems with and without Noise using Differential Evolution-based Method. Chin. Phys. B 2011, 20, 060502. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Z.; Chong, Y. Chaotic System Parameter Identification based on Firefly Optimization. Appl. Mech. Mater. 2013, 347-350, 3821–3826. [Google Scholar] [CrossRef]
- Xiang-Tao, L.; Ming-Hao, Y. Parameter Estimation for Chaotic Systems using the Cuckoo Search Algorithm with an Orthogonal Learning Method. Chin. Phys. B 2012, 21, 050507. [Google Scholar]
- He, Q.; Wang, L.; Liu, B. Parameter Estimation for Chaotic Systems by Particle Swarm Optimization. Chaos Solitons Fractals 2007, 34, 654–661. [Google Scholar] [CrossRef]
- Li, L.; Yang, Y.; Peng, H.; Wang, X. Parameters Identification of Chaotic Systems via Chaotic Ant Swarm. Chaos Solitons Fractals 2006, 28, 1204–1211. [Google Scholar] [CrossRef]
- Gholipour, R.; Khosravi, A.; Mojallali, H. Parameter Estimation of Lorenz Chaotic Dynamic System using Bees Algorithm. Int. J. Eng. 2013, 26, 257–262. [Google Scholar] [CrossRef]
- Wei, J.; Yu, Y. An Effective Hybrid Cuckoo Search Algorithm for Unknown Parameters and Time Delays Estimation of Chaotic Systems. IEEE Access 2018, 6, 6560–6571. [Google Scholar] [CrossRef]
- Sheludko, A. Parameter Estimation for One-Dimensional Chaotic Systems by Guaranteed Algorithm and Particle Swarm Optimization. IFAC-PapersOnLine 2018, 51, 337–342. [Google Scholar] [CrossRef]
- Zhuang, L.; Cao, L.; Wu, Y.; Zhong, Y.; Zhangzhong, L.; Zheng, W.; Wang, L. Parameter Estimation of Lorenz Chaotic System Based on A Hybrid Jaya-Powell Algorithm. IEEE Access 2020, 8, 20514–20522. [Google Scholar] [CrossRef]
- Gupta, S.; Gautam, G.; Vats, D.; Varshney, P.; Srivastava, S. Estimation of Parameters in Fractional Order Financial Chaotic System with Nature Inspired Algorithms. Procedia Comput. Sci. 2020, 173, 18–27. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, S.; Cheng, J. Parameter Estimation for A Chaotic Dynamical System with Partial Observations. J. Inverse Ill-Posed Probl. 2021, 29, 515–524. [Google Scholar] [CrossRef]
- Carlson, E.; Hudson, J.; Larios, A.; Martinez, V.; Ng, E.; Whitehead, J. Dynamically Learning the Parameters of a Chaotic System Using Partial Observations. arXiv 2021, arXiv:2108.08354. [Google Scholar] [CrossRef]
- Peng, C.; Li, Y. Parameters Identification of Nonlinear Lorenz Chaotic System for High-Precision Model Reference Synchronization. Nonlinear Dyn. 2022, 108, 1733–1754. [Google Scholar] [CrossRef]
- Rizk-Allah, R.; Farag, M.; Barghout, M.; Hassanien, A. A Memory-Based Particle Swarm Optimization for Parameter Identification of Lorenz Chaotic System. In Proceedings of International Conference on Computing and Communication Networks; Springer: Singapore, 2022; pp. 571–587. [Google Scholar]
- Ann, N.; Pebrianti, D.; Abas, M.; Bayuaji, L. Parameter Estimation of Lorenz Attractor: A Combined Deep Neural Network and K-Means Clustering Approach. In Recent Trends in Mechatronics towards Industry; Springer: Singapore, 2022; pp. 321–331. [Google Scholar]
- Peng, Y.; He, S.; Sun, K. Parameter Identification for Discrete Memristive Chaotic Map using Adaptive Differential Evolution Algorithm. Nonlinear Dyn. 2022, 107, 1263–1275. [Google Scholar] [CrossRef]
- Chang, W. Parameter Identification of Rossler’s Chaotic System by an Evolutionary Algorithm. Chaos Solitons Fractals 2006, 29, 1047–1053. [Google Scholar] [CrossRef]
- Chang, W. Parameter Identification of Chen and Lü Systems: A Differential Evolution Approach. Chaos Solitons Fractals 2007, 32, 1469–1476. [Google Scholar] [CrossRef]
- Gonzales, O.; Han, G.; De, G.; Sánchez, E. Lorenz-Based Chaotic Cryptosystem: A Monolithic Implementation. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2000, 47, 1243–1247. [Google Scholar] [CrossRef]
- Roslan, U.; Salleh, Z.; Kilicman, A. Solving Zhou Chaotic System using Fourth-Order Runge-Kutta Method. World Appl. Sci. J. 2013, 21, 939–944. [Google Scholar]
- Garoma, H.; Kabeto, M. Numerical Solution of Fourth Order Ordinary Differential Equations using Fifth Order Runge—Kutta Method. Asian J. Sci. Technol. 2017, 8, 4332–4339. [Google Scholar]
- Meneny, S. An Introduction to Digital Signal Processing: A Focus on Implementation, 1st ed.; River Press: Fort Benton, MT, USA, 2008. [Google Scholar]
- Mandal, M.; Asif, A. Continuous and Discrete Time Signals and Systems, 1st ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Jiang, Z.; Yang, Q. A Discrete Fruit Fly Optimization Algorithm for the Traveling Salesman Problem. PLoS ONE 2016, 11, e0165804. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, B.; Zhang, J.; Qin, Y.; Feng, X.; Liu, B. Parameter Estimation of Nonlinear Chaotic System by Improved TLBO Strategy. Soft Comput. 2016, 20, 4965–4980. [Google Scholar] [CrossRef]
- Kundra, H.; Khan, W.; Malik, M.; Rane, K.; Neware, R.; Jain, V. Quantum-Inspired Firefly Algorithm Integrated with Cuckoo Search for Optimal Path Planning. Int. J. Mod. Phys. C 2022, 33, 2250018. [Google Scholar] [CrossRef]
- Li, H.; Bai, P.; Xue, J.; Zhu, J.; Zhang, H. Parameter Estimation of Chaotic Systems using Fireworks Algorithm. Adv. Swarm Comput. Intell. 2015, 9141, 457–467. [Google Scholar]
- Abarbanel, H.; Kennel, M.; Illing, L.; Tang, S.; Chen, H.; Liu, J. Synchronization and Communication using Semiconductor Lasers with Optoelectronic Feedback. IEEE J. Quantum Electron. 2001, 37, 1301–1311. [Google Scholar] [CrossRef]
QFOA Parameters | Chaotic Synchronization Problem |
---|---|
Number of iterations | The search process’s best solution iteration count. |
Number of swarms m | m = 25. |
Initial location | The initial solution is randomly selected from each parameter’s search space. |
Smell concentration | Mean square error (Objective or fitness function). |
Vision | Smell concentration-based parameter selection. |
Algorithm | Parameters | Values |
---|---|---|
Fruit fly (FOA) | Number of swarms Maximum number of iterations | 25 50 |
Cuckoo search (CS) | Number of swarms Probability rate Maximum number of iterations | 25 0.20 50 |
Practical swarm (PSO) | Number of swarms Inertia weight Acceleration coefficient Maximum number of iterations | 25 0.8 1.5 50 |
Genetic algorithm (GA) | Number of swarms Crossover rate Mutation rate Maximum number of iterations | 25 0.7 0.3 50 |
Firefly algorithm (FA) | Number of swarm Initial brightness of each fly Absorption coefficient of light Step size (α) Maximum number of iterations | 25 1 1 1 50 |
Models | Means of the Best Fitness | Std. Dev. of the Best Fitness | θ1 | θ2 | θ3 |
---|---|---|---|---|---|
QFOA | 9.53 × 10−9 | 5.83 × 10−9 | 10.00 | 28.00 | 2.6666 |
CS | 1.71 × 10−4 | 1.69 × 10−4 | 10.00 | 28.00 | 2.6664 |
PSO | 0.118 | 0.269 | 9.998 | 27.99 | 2.6665 |
GA | 1.332 | 2.784 | 10.027 | 28.01 | 2.6691 |
Number of Samples | Means of the Best Fitness | θ1 | θ2 | θ3 |
---|---|---|---|---|
W = 30 | 9.45 × 10−9 | 10.00 | 28.000 | 2.6667 |
W = 100 | 1.49 × 10−8 | 10.00 | 27.998 | 2.6666 |
W = 200 | 2.18 × 10−8 | 9.99 | 27.997 | 2.6666 |
Model | Means of the Best Fitness | Std. Dev. of the Best Fitness | θ1 | θ2 | θ3 | |
---|---|---|---|---|---|---|
Masking | QFOA | 1.04 × 10−8 | 6.27 × 10−9 | 10.00 | 28.00 | 2.6667 |
voice signal with chaotic signal | QFA | 1.61 × 10−8 | 1.85 × 10−8 | 10.00 | 27.99 | 2.6666 |
Chaotic only | QFOA | 9.53 × 10−9 | 5.79 × 10−9 | 10.00 | 28.00 | 2.6667 |
QFA | 1.42 × 10−8 | 1.18 × 10−8 | 10.00 | 28.00 | 2.6667 |
Chaotic Systems | θ1 | θ2 | θ3 |
---|---|---|---|
Lorenz | 10.000 | 28.0000 | 2.6667 |
Chen | 35.000 | 2.9999 | 27.999 |
Rossler | 0.2000 | 0.3999 | 5.6999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zainel, Q.M.; Darwish, S.M.; Khorsheed, M.B. Employing Quantum Fruit Fly Optimization Algorithm for Solving Three-Dimensional Chaotic Equations. Mathematics 2022, 10, 4147. https://doi.org/10.3390/math10214147
Zainel QM, Darwish SM, Khorsheed MB. Employing Quantum Fruit Fly Optimization Algorithm for Solving Three-Dimensional Chaotic Equations. Mathematics. 2022; 10(21):4147. https://doi.org/10.3390/math10214147
Chicago/Turabian StyleZainel, Qasim M., Saad M. Darwish, and Murad B. Khorsheed. 2022. "Employing Quantum Fruit Fly Optimization Algorithm for Solving Three-Dimensional Chaotic Equations" Mathematics 10, no. 21: 4147. https://doi.org/10.3390/math10214147
APA StyleZainel, Q. M., Darwish, S. M., & Khorsheed, M. B. (2022). Employing Quantum Fruit Fly Optimization Algorithm for Solving Three-Dimensional Chaotic Equations. Mathematics, 10(21), 4147. https://doi.org/10.3390/math10214147