Non-Contact Detection of Delamination in Composite Laminates Coated with a Mechanoluminescent Sensor Using Convolutional AutoEncoder
Abstract
:1. Introduction
2. Background on Convolutional AutoEncoder (CAE)
2.1. Motivations on CAE
2.2. Architecture of CAE for Anomaly Detection
3. Methodology
4. Experimental Details
4.1. Preparation of Test Specimens
4.2. Test Setup
4.3. Reconstruction Error of Light Emission Images
4.4. Binary Classification
5. Results
5.1. MPV Changes
5.2. Pixel-Level Segmentation CAE
5.3. Comparision of CAE Results to Canny Edge Detection Results
6. Discussions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prashanth, S.; Subbaya, K.M.; Nithin, K.; Sachhidananda, S. Fiber Reinforced Composites—A Review. J. Mater. Sci. Eng. 2017, 06, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.U.; Kim, J.-K. Impact and Delamination Failure of Multiscale Carbon Nanotube-Fiber Reinforced Polymer Composites: A Review. Int. J. Aeronaut. Space Sci. 2011, 12, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Camanho, P.P.; Davila, C.G.; De Moura, M.F. Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials. J. Compos. Mater. 2003, 37, 1415–1438. [Google Scholar] [CrossRef]
- An, H.; Youn, B.D.; Kim, H.S. Reliability-based Design Optimization of Laminated Composite Structures under Delamination and Material Property Uncertainties. Int. J. Mech. Sci. 2021, 205, 106561. [Google Scholar] [CrossRef]
- Khan, A.; Kim, H.S. A Brief Overview of Delamination Localization in Laminated Composites. Multiscale Sci. Eng. 2022, 4, 102–110. [Google Scholar] [CrossRef]
- Huang, B.; Wang, J.; Kim, H.S. A stress function based model for transient thermal stresses of composite laminates in various time-variant thermal environments. Int. J. Mech. Sci. 2020, 180, 105651. [Google Scholar] [CrossRef]
- Khalid, S.; Kim, H.S. Recent Studies on Stress Function-Based Approaches for the Free Edge Stress Analysis of Smart Composite Laminates: A Brief Review. Multiscale Sci. Eng. 2022, 4, 73–78. [Google Scholar] [CrossRef]
- Khan, A.; Raouf, I.; Noh, Y.R.; Lee, D.; Sohn, J.W.; Kim, H.S. Autonomous assessment of delamination in laminated composites using deep learning and data augmentation. Compos. Struct. 2022, 290, 115502. [Google Scholar] [CrossRef]
- Bolotin, V.V. Delaminations in composite structures: Its origin, buckling, growth and stability. Compos. Part B Eng. 1996, 27, 129–145. [Google Scholar] [CrossRef]
- Khalid, S.; Kim, H.-S.; Kim, H.S.; Choi, J.-H. Inspection Interval Optimization for Aircraft Composite Tail Wing Structure Using Numerical-Analysis-Based Approach. Mathematics 2022, 10, 3836. [Google Scholar] [CrossRef]
- Khan, A.; Kim, N.; Shin, J.K.; Kim, H.S.; Youn, B.D. Damage assessment of smart composite structures via machine learning: A review. JMST Adv. 2019, 1, 107–124. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Ko, D.-K.; Lim, S.C.; Kim, H.S. Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network. Compos. Part B Eng. 2019, 161, 586–594. [Google Scholar] [CrossRef]
- Khan, A.; Kim, H.S. Assessment of delaminated smart composite laminates via system identification and supervised learning. Compos. Struct. 2018, 206, 354–362. [Google Scholar] [CrossRef]
- An, H.; Youn, B.D.; Kim, H.S. A methodology for sensor number and placement optimization for vibration-based damage detection of composite structures under model uncertainty. Compos. Struct. 2022, 279, 114863. [Google Scholar] [CrossRef]
- Khan, A.; Khalid, S.; Raouf, I.; Sohn, J.-W.; Kim, H.-S. Autonomous Assessment of Delamination Using Scarce Raw Structural Vibration and Transfer Learning. Sensors 2021, 21, 6239. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Lee, J.; Kim, H.S. Series Solution-Based Approach for the Interlaminar Stress Analysis of Smart Composites under Thermo-Electro-Mechanical Loading. Mathematics 2022, 10, 268. [Google Scholar] [CrossRef]
- Khan, A.; Kim, H.S. Classification and prediction of multidamages in smart composite laminates using discriminant analysis. Mech. Adv. Mater. Struct. 2022, 29, 230–240. [Google Scholar] [CrossRef]
- An, H.; Youn, B.D.; Kim, H.S. Optimal Sensor Placement Considering Both Sensor Faults Under Uncertainty and Sensor Clustering for Vibration-Based Damage Detection. Struct. Multidiscip. Optim. 2022, 65, 102. [Google Scholar] [CrossRef]
- Sohn, H.; Park, G.; Wait, J.R.; Limback, N.P.; Farrar, C.R. Wavelet-based active sensing for delamination detection in composite structures. Smart Mater. Struct. 2004, 13, 153–160. [Google Scholar] [CrossRef]
- Tan, P.; Tong, L. Delamination Detection of Composite Beams Using Piezoelectric Sensors with Evenly Distributed Electrode Strips. J. Compos. Mater. 2004, 38, 321–352. [Google Scholar] [CrossRef]
- Abot, J.L.; Song, Y.; Vatsavaya, M.S.; Medikonda, S.; Kier, Z.; Jayasinghe, C.; Rooy, N.; Shanov, V.N.; Schulz, M.J. Delamination detection with carbon nanotube thread in self-sensing composite materials. Compos. Sci. Technol. 2010, 70, 1113–1119. [Google Scholar] [CrossRef]
- Takeda, S.; Okabe, Y.; Takeda, N. Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors. Compos. Part Appl. Sci. Manuf. 2002, 33, 971–980. [Google Scholar] [CrossRef]
- Xu, C.-N.; Watanabe, T.; Akiyama, M.; Zheng, X.-G. Direct view of stress distribution in solid by mechanoluminescence. Appl. Phys. Lett. 1999, 74, 2414–2416. [Google Scholar] [CrossRef]
- Xu, C.-N.; Zheng, X.-G.; Akiyama, M. Dynamic visualization of stress distribution by mechanoluminescence image. Appl. Phys. Lett. 2000, 76, 179–181. [Google Scholar] [CrossRef]
- Park, B.; An, Y.-K.; Sohn, H. Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning. Compos. Sci. Technol. 2014, 100, 10–18. [Google Scholar] [CrossRef]
- Sohn, H.; Dutta, D.; Yang, J.Y.; Park, H.J.; DeSimio, M.; Olson, S.; Swenson, E. Delamination detection in composites through guided wave field image processing. Compos. Sci. Technol. 2011, 71, 1250–1256. [Google Scholar] [CrossRef]
- Terasaki, N.; Xu, C.-N. Historical-Log Recording System for Crack Opening and Growth Based on Mechanoluminescent Flexible Sensor. IEEE Sens. J. 2013, 13, 3999–4004. [Google Scholar] [CrossRef]
- Timilsina, S.; Kim, J.S.; Kim, J.; Kim, G.-W. Review of state-of-the-art sensor applications using mechanoluminescence microparticles. Int. J. Precis. Eng. Manuf. 2016, 17, 1237–1247. [Google Scholar] [CrossRef]
- Terasaki, N.; Fujio, Y.; Horiuchi, S.; Akiyama, H. Mechanoluminescent studies of failure line on double cantilever beam (DCB) and tapered-DCB (TDCB) test with similar and dissimilar material joints. Int. J. Adhes. Adhes. 2019, 93, 102328. [Google Scholar] [CrossRef]
- Sohn, K.-S.; Timilsina, S.; Singh, S.P.; Lee, J.-W.; Kim, J.S. A Mechanoluminescent ZnS:Cu/Rhodamine/SiO2/PDMS and Piezoresistive CNT/PDMS Hybrid Sensor: Red-Light Emission and a Standardized Strain Quantification. ACS Appl. Mater. Interfaces 2016, 8, 34777–34783. [Google Scholar] [CrossRef]
- Terasaki, N.; Fujio, Y.; Sakata, Y.; Uehara, M.; Tabaru, T. Direct Visualization of Stress Distribution Related to Adhesive through Mechanoluminescence. ECS Trans. 2017, 75, 9. [Google Scholar] [CrossRef]
- Ryu, D.; Castano, N.; Vedera, K. Mechanoluminescent Composites Towards Autonomous Impact Damage Detection of Aerospace Structures. In Proceedings of the Structural Health Monitoring 2015, Stanford, CA, USA, 1–3 September 2015; Destech Publications: Lancaster, PA, USA, 2015. [Google Scholar]
- Kim, J.S.; Kim, G.-W. New non-contacting torque sensor based on the mechanoluminescence of ZnS:Cu microparticles. Sens. Actuators Phys. 2014, 218, 125–131. [Google Scholar] [CrossRef]
- Chen, B.; Peng, D.-F.; Lu, P.; Sheng, Z.-P.; Yan, K.-Y.; Fu, Y. Evaluation of vibration mode shape using a mechanoluminescent sensor. Appl. Phys. Lett. 2021, 119, 094102. [Google Scholar] [CrossRef]
- Timilsina, S.; Bashnet, R.; Kim, S.H.; Lee, K.H.; Kim, J.S. A life-time reproducible mechano-luminescent paint for the visualization of crack propagation mechanisms in concrete structures. Int. J. Fatigue 2017, 101, 75–79. [Google Scholar] [CrossRef]
- Fujio, Y.; Xu, C.-N.; Terasawa, Y.; Sakata, Y.; Yamabe, J.; Ueno, N.; Terasaki, N.; Yoshida, A.; Watanabe, S.; Murakami, Y. Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel. Int. J. Hydrogen Energy 2016, 41, 1333–1340. [Google Scholar] [CrossRef] [Green Version]
- Fujio, Y.; Xu, C.-N.; Sakata, Y.; Ueno, N.; Terasaki, N. Invisible crack visualization and depth analysis by mechanoluminescence film. J. Alloys Compd. 2020, 832, 154900. [Google Scholar] [CrossRef]
- Kim, W.J.; Lee, J.M.; Kim, J.S.; Lee, C.J. Measuring high speed crack propagation in concrete fracture test using mechanoluminescent material. Smart Struct. Syst. 2012, 10, 547–555. [Google Scholar] [CrossRef]
- Timilsina, S.; Lee, K.H.; Kwon, Y.N.; Kim, J.S. Optical Evaluation of In Situ Crack Propagation by Using Mechanoluminescence of SrAl2O4 :Eu2+, Dy3+. J. Am. Ceram. Soc. 2015, 98, 2197–2204. [Google Scholar] [CrossRef]
- Raju, P.D.R.; Neelima, G. Image Segmentation by using Histogram Thresholding. Int. J. Comput. Sci. Eng. Technol. 2012, 2, 776–779. [Google Scholar]
- Zhang, L.; Yang, F.; Daniel Zhang, Y.; Zhu, Y.J. Road crack detection using deep convolutional neural network. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; IEEE: Phoenix, AZ, USA, 2016; pp. 3708–3712. [Google Scholar]
- Li, S.; Zhao, X. Image-Based Concrete Crack Detection Using Convolutional Neural Network and Exhaustive Search Technique. Adv. Civ. Eng. 2019, 2019, 6520620. [Google Scholar] [CrossRef] [Green Version]
- Cha, Y.-J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks: Deep learning-based crack damage detection using CNNs. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Dung, C.V.; Anh, L.D. Autonomous concrete crack detection using deep fully convolutional neural network. Autom. Constr. 2019, 99, 52–58. [Google Scholar] [CrossRef]
- Chow, J.K.; Su, Z.; Wu, J.; Tan, P.S.; Mao, X.; Wang, Y.H. Anomaly detection of defects on concrete structures with the convolutional autoencoder. Adv. Eng. Inform. 2020, 45, 101105. [Google Scholar] [CrossRef]
- Tang, W.; Vian, C.M.; Tang, Z.; Yang, B. Anomaly detection of core failures in die casting X-ray inspection images using a convolutional autoencoder. Mach. Vis. Appl. 2021, 32, 102. [Google Scholar] [CrossRef]
- Ding, L.; Goshtasby, A. On the Canny edge detector. Pattern Recognit. 2001, 34, 721–725. [Google Scholar] [CrossRef]
- Dung, C.V.; Sekiya, H.; Hirano, S.; Okatani, T.; Miki, C. A vision-based method for crack detection in gusset plate welded joints of steel bridges using deep convolutional neural networks. Autom. Constr. 2019, 102, 217–229. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Song, J.; Kim, H.S.; Ryu, D. Non-Contact Detection of Delamination in Composite Laminates Coated with a Mechanoluminescent Sensor Using Convolutional AutoEncoder. Mathematics 2022, 10, 4254. https://doi.org/10.3390/math10224254
Park S, Song J, Kim HS, Ryu D. Non-Contact Detection of Delamination in Composite Laminates Coated with a Mechanoluminescent Sensor Using Convolutional AutoEncoder. Mathematics. 2022; 10(22):4254. https://doi.org/10.3390/math10224254
Chicago/Turabian StylePark, Seogu, Jinwoo Song, Heung Soo Kim, and Donghyeon Ryu. 2022. "Non-Contact Detection of Delamination in Composite Laminates Coated with a Mechanoluminescent Sensor Using Convolutional AutoEncoder" Mathematics 10, no. 22: 4254. https://doi.org/10.3390/math10224254
APA StylePark, S., Song, J., Kim, H. S., & Ryu, D. (2022). Non-Contact Detection of Delamination in Composite Laminates Coated with a Mechanoluminescent Sensor Using Convolutional AutoEncoder. Mathematics, 10(22), 4254. https://doi.org/10.3390/math10224254