Nonlinear Mixed Convection in a Reactive Third-Grade Fluid Flow with Convective Wall Cooling and Variable Properties
Abstract
:1. Introduction
2. Mathematical Formulation
3. Solution by Weighted Residual Method
4. Solution by Shooting-Runge–Kutta Method
5. Results and Discussion
6. Concluding Remarks
- -
- Flow, temperature, and entropy generation are enhanced with increasing values of the Grashof number, the quadratic component of buoyancy and Frank-Kameneskii parameter but reduces with increasing third-grade material parameter.
- -
- Increasing values of third-grade parameter encourages the thermal stability of the flow, while increasing values of the linear and nonlinear buoyancy parameter destabilizes the flow.
- -
- The Grashof number increase encourages the early occurrence of thermal runaway and exergy loss in the flow domain.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
dimensional Cartesian coordinates, (m) | |
dimensional Cartesian coordinates | |
referenced temperature, (K) | |
T | dimensional fluid temperature (K) |
dimensionless fluid temperature | |
the dimensional flow velocity (m/s) | |
the dimensionless flow velocity | |
activation energy (E/mols) | |
reaction heat (J) | |
initial specie concentration (mol) | |
reaction rate constant | |
reaction exponent | |
dimensionless activation energy | |
universal rate constant J/(K.mol) | |
constant dynamic viscosity (Poise) | |
fluid density (Kg/m3) | |
gravitational acceleration m/s2 | |
Planck’s constant (Js) | |
frequency of vibration N.s/m2 | |
fluid pressure (N/m2) | |
referenced thermal conductivity J/(mK), | |
viscosity and thermal conductivity, respectively(1/K). | |
dimensionless variation parameters for viscosity and thermal conductivity, respectively. | |
modified Grashof number | |
coefficient of the quadratic thermal expansion, | |
Frank-Kameneskii parameter | |
Viscous dissipation parameter | |
Biot number | |
non-Newtonian material parameter | |
coefficient of heat transfer 1/K |
References
- Salawu, S.O.; Fatunmbi, E.O.; Ayanshola, A.M. On the diffusion reaction of fourth-grade hydromagnetic fluid flow and thermal criticality in a plane couette medium. Results Eng. 2020, 8, 100169. [Google Scholar] [CrossRef]
- Cui, J.; Munir, S.; Raies, S.F.; Farooq, U.; Razzaq, R. Non-similar aspects of heat generation in bioconvection from flat surface subjected to chemically reactive stagnation point flow of Oldroyd-B fluid. Alex. Eng. J. 2022, 61, 5397–5411. [Google Scholar] [CrossRef]
- Salawu, S.O.; Oderinu, R.A.; Ohaegbue, A.D. Thermal runaway and thermodynamic second law of a reactive couple stress hydromagnetic fluid with variable properties and Navier slips. Sci. Afr. 2020, 7, e00261. [Google Scholar] [CrossRef]
- Sadiq, M.A.; Hayat, T. Entropy optimized flow of Reiner-Rivlin nanofluid with chemical reaction subject to stretchable rotating disk. Alex. Eng. J. 2022, 61, 3501–3510. [Google Scholar] [CrossRef]
- Okoya, S.S. Computational study of thermal influence in axial annular flow of a reactive third grade fluid with non-linear viscosity. Alex. Eng. J. 2019, 58, 401–411. [Google Scholar] [CrossRef]
- Adesanya, S.O.; Falade, J.; Jangili, S.; Bég, O.A. Irreversibility analysis for reactive third-grade fluid flow and heat transfer with convective wall cooling. Alex. Eng. J. 2017, 56, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Salawu, S.O.; Kareem, R.A.; Shonola, S.A. Radiative thermal criticality and entropy generation of hydromagnetic reactive Powell–Eyring fluid in saturated porous media with variable conductivity. Energy Rep. 2019, 5, 480–488. [Google Scholar] [CrossRef]
- Makinde, O.D. Hermite-Padé approximation approach to thermal criticality for a reactive third-grade liquid in a channel with isothermal walls. Int. Commun. Heat Mass Transf. 2007, 34, 870–877. [Google Scholar] [CrossRef]
- Okoya, S.S. Disappearance of criticality for reactive third-grade fluid with Reynold’s model viscosity in a flat channel. Int. J. Non-Linear Mech. 2011, 46, 1110–1115. [Google Scholar] [CrossRef]
- Khan, S.A.; Khan, M.I.; Alzahrani, F. Melting heat transportation in chemical reactive flow of third grade nanofluid with irreversibility analysis. Int. Commun. Heat Mass Transf. 2021, 129, 105696. [Google Scholar] [CrossRef]
- Makinde, O.D.; Chinyoka, T. Numerical study of unsteady hydromagnetic generalized Couette flow of a reactive third-grade fluid with asymmetric convective cooling. Comput. Math. Appl. 2011, 61, 1167–1179. [Google Scholar] [CrossRef] [Green Version]
- Baranovskii, E.S.; Artemov, M.A. Steady flows of second-grade fluids in a channel. Appl. Math. 2017, 13, 342–353. [Google Scholar] [CrossRef]
- Okoya, S.S. On the transition for a generalized Couette flow of a reactive third-grade fluid with viscous dissipation. Int. Commun. Heat Mass Transf. 2008, 35, 188–196. [Google Scholar] [CrossRef]
- Hron, J.; LeRoux, C.; Malek, J.; Rajagopal, K.R. Flows of incompressible fluids subject to Navier’s slip on the boundary. Comput. Math. Appl. 2008, 56, 2128–2143. [Google Scholar] [CrossRef] [Green Version]
- Zehra, I.; Kousar, N.; UrRehman, K. Pressure dependent viscosity subject to Poiseuille and Couette flows via Tangent hyperbolic model. Phys. A Stat. Mech. Its Appl. 2019, 527, 121332. [Google Scholar] [CrossRef]
- Manjunatha, G.; Rajashekhar, C.; Vaidya, H.; Prasad, K.V.; Vajravelu, K. Impact of heat and mass transfer on the peristaltic mechanism of Jeffery fluid in a non-uniform porous channel with variable viscosity and thermal conductivity. J. Therm. Anal. Calorim. 2020, 139, 1213–1228. [Google Scholar] [CrossRef]
- Qasim, M.; Riaz, N.; Lu, D.; Afridi, M.I. Flow over a Needle Moving in a Stream of Dissipative Fluid Having Variable Viscosity and Thermal Conductivity. Arab. J. Sci. Eng. 2021, 46, 7295–7302. [Google Scholar] [CrossRef]
- Saraswathy, M.; Prakash, D.; Muthtamilselvan, M.; Al Mdallal, Q.M. Arrhenius energy on asymmetric flow and heat transfer of micropolar fluids with variable properties: A sensitivity approach. Alex. Eng. J. 2022, 61, 12329–12352. [Google Scholar] [CrossRef]
- Khan, A.A.; Zaib, F.; Zaman, A. Effects of entropy generation on Powell Eyring fluid in a porous channel. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 5027–5036. [Google Scholar] [CrossRef]
- Singh, K.; Pandey, A.K.; Kumar, M. Entropy generation impact on flow of micropolar fluid via an inclined channel with non-uniform heat source and variable fluid properties. Int. J. Appl. Comput. Math. 2020, 6, 85. [Google Scholar] [CrossRef]
- Shah, Z.; Kumam, P.; Deebani, W. Radiative MHD Casson Nanofluid Flow with Activation energy and chemical reaction over past nonlinearly stretching surface through Entropy generation. Sci. Rep. 2020, 10, 4402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusuf, T.A.; Kumar, R.N.; Prasannakumara, B.C.; Adesanya, S.O. Irreversibility analysis in micropolar fluid film along an incline porous substrate with slip effects. Int. Commun. Heat Mass Transf. 2021, 126, 105357. [Google Scholar] [CrossRef]
- Agrawal, R.; Kaswan, P. Minimization of the entropy generation in MHD flow and heat transfer of nanofluid over a vertical cylinder under the influence of thermal radiation and slip condition. Heat Transf. 2022, 51, 1790–1808. [Google Scholar] [CrossRef]
- Adesanya, S.O.; Ogunseye, H.A.; Lebelo, R.S.; Moloi, K.C.; Adeyemi, O.G. Second law analysis for nonlinear convective flow of a reactive couple stress fluid through a vertical channel. Heliyon 2018, 4, e00907. [Google Scholar] [CrossRef] [Green Version]
- Xia, W.F.; Ahmad, S.; Khan, M.N.; Ahmad, H.; Rehman, A.; Baili, J.; Gia, T.N. Heat and mass transfer analysis of nonlinear mixed convective hybrid nanofluid flow with multiple slip boundary conditions. Case Stud. Therm. Eng. 2022, 32, 101893. [Google Scholar] [CrossRef]
- Ibrahim, W.; Gadisa, G. Finite element solution of nonlinear convective flow of Oldroyd-B fluid with Cattaneo-Christov heat flux model over nonlinear stretching sheet with heat generation or absorption. Propuls. Power Res. 2020, 9, 304–315. [Google Scholar] [CrossRef]
- Patil, P.M.; Shankar, H.F.; Hiremath, P.S.; Momoniat, E. Nonlinear mixed convective nanofluid flow about a rough sphere with the diffusion of liquid hydrogen. Alex. Eng. J. 2021, 60, 1043–1053. [Google Scholar] [CrossRef]
- Bandara, S.; Carnegie, C.; Johnson, C.; Akindoju, F.; Williams, E.; Swaby, J.M.; Oki, A.; Carson, L.E. Interaction of heat generation in nonlinear mixed/forced convective flow of Williamson fluid flow subject to generalized Fourier’s and Fick’s concept. J. Mater. Res. Technol. 2020, 9, 11080–11086. [Google Scholar]
- Yusuf, T.A.; Mabood, F.; Gbadeyan, J.A.; Adesanya, S.O. Nonlinear Convective for MHDOldroyd8-constant fluid in a channel with chemical reaction and convective boundary condition. J. Therm. Sci. Eng. Appl. 2020, 12, 1–19. [Google Scholar] [CrossRef]
- IjazKhan, M.; Alzahrani, F.; Hobiny, A. Heat transport and nonlinear mixed convective nanomaterial slip flow of Walter-B fluid containing gyrotactic microorganisms. Alex. Eng. J. 2020, 59, 1761–1769. [Google Scholar] [CrossRef]
- Ijaz, M.; Ayub, M. Nonlinear convective stratified flow of Maxwell nanofluid with activation energy. Heliyon 2019, 5, e01121. [Google Scholar] [CrossRef] [PubMed]
- Srinivasacharya, D.; RamReddy, C.; Naveen, P. Double dispersion effect on nonlinear convective flow over an inclined plate in a micropolar fluid saturated non-Darcy porous medium. Eng. Sci. Technol. Int. J. 2018, 21, 984–995. [Google Scholar] [CrossRef]
- Makinde, O.D. On thermal stability of a reactive third-grade fluid in a channel with convective cooling the walls. Appl. Math. Comput. 2009, 213, 170–176. [Google Scholar] [CrossRef]
- Makinde, O.D.; Aziz, A. Second law analysis for a variable viscosity plane Poiseuille flow with asymmetric convective cooling. Comput. Math. Appl. 2010, 60, 3012–3019. [Google Scholar] [CrossRef]
0 | −6.96195549259×10−18 | 0.000000000000000 | 6.961955492590054 × 10−18 |
0.1 | 0.04313941885340904 | 0.04313941993774605 | 1.084337016010739 × 10−9 |
0.2 | 0.07813634077297339 | 0.07813635190993772 | 1.11369643229775 × 10−8 |
0.3 | 0.10406977160813229 | 0.10406978921035206 | 1.760221977897824 × 10−9 |
0.4 | 0.12006990360382683 | 0.12006992567673559 | 2.207290876465872 × 10−8 |
0.5 | 0.12548527366302917 | 0.12548528888798596 | 1.522495679529001 × 10−9 |
0.6 | 0.12006990360382683 | 0.12006990533241987 | 1.728593046479432 × 10−9 |
0.7 | 0.1040697716081323 | 0.10406977022133693 | 1.386795372981808 × 10−9 |
0.8 | 0.07813634077297338 | 0.07813634228509685 | 1.512123468105919 × 10−9 |
0.9 | 0.043139418853409044 | 0.04313941955035403 | 6.96944987832459 × 10−10 |
1.0 | −7.69196285588 × 10−18 | −9.12736796 × 10−10 | 9.12736788740352 × 10−10 |
0 | 0.022151849024484603 | 0.022151849374097372 | 3.496127692903528 × 10−10 |
0.1 | 0.04208489447368267 | 0.04208489042284373 | 4.050838935121259 × 10−9 |
0.2 | 0.05751544434774708 | 0.057515440006678895 | 4.341068185476082 × 10−9 |
0.3 | 0.06849268440471615 | 0.06849268031195316 | 4.092762989627019 × 10−9 |
0.4 | 0.07505930588225566 | 0.07505930197957113 | 3.902684536649659 × 10−9 |
0.5 | 0.07724467496042003 | 0.07724467142322092 | 3.537199116943057 × 10−9 |
0.6 | 0.07505930588225566 | 0.07505930282648429 | 3.055771372051374 × 10−9 |
0.7 | 0.06849268440471615 | 0.06849268167736071 | 2.727355438714163 × 10−9 |
0.8 | 0.05751544434774707 | 0.05751544180643439 | 2.541312688064678 × 10−9 |
0.9 | 0.04208489447368267 | 0.04208489220244641 | 2.271236268502896 × 10−9 |
1.0 | 0.022151849024484603 | 0.02215184702121924 | 2.003265362621187 × 10−9 |
5 | 0.1 | 0.1 | 0.3 | 0.1 | 3.369629994329486 |
10 | 0.1 | 0.1 | 0.3 | 0.1 | 3.329979429762467 |
15 | 0.1 | 0.1 | 0.3 | 0.1 | 3.3377915382719980 |
20 | 0.1 | 0.1 | 0.3 | 0.1 | 3.3375451276368135 |
25 | 0.1 | 0.1 | 0.3 | 0.1 | 3.3376391452777585 |
30 | 0.1 | 0.1 | 0.3 | 0.1 | 3.3376334297519272 |
35 | 0.1 | 0.1 | 0.3 | 0.1 | 3.3376356319779727 |
0.1 | 0.1 | 0.3 | 0.1 | 3 | 3.337791538271998 |
0.3 | 0.1 | 0.3 | 0.1 | 3 | 3.294547099649542 |
0.5 | 0.1 | 0.3 | 0.1 | 3 | 3.251342585235665 |
0.1 | 0.3 | 0.3 | 0.1 | 3 | 3.327113416799457 |
0.1 | 0.5 | 0.3 | 0.1 | 3 | 3.3180031889548034 |
0.1 | 0.1 | 0.5 | 0.1 | 3 | 3.354693697420452 |
0.1 | 0.1 | 0.8 | 0.1 | 3 | 3.370237078964153 |
0.1 | 0.1 | 0.3 | 0.01 | 3 | 3.5150936154732557 |
0.1 | 0.1 | 0.3 | 0.001 | 3 | 3.5341579072708558 |
0.1 | 0.1 | 0.3 | 0.1 | 5 | 3.1911369048073452 |
0.1 | 0.1 | 0.3 | 0.1 | 7 | 3.0387490555917243 |
Makinde & Aziz [34] | Present Result | ||
---|---|---|---|
0 | 0.0000000000000000 | 1.9996146847 × 10−18 | 1.999614684734152 × 10−18 |
0.1 | 0.04500260897270728 | 0.04500261769036607 | 8.717658789292315 × 10−9 |
0.2 | 0.08000542199231503 | 0.08000543151384462 | 9.521529592548816 × 10−9 |
0.3 | 0.10500767322725557 | 0.10500768307611696 | 9.848861393102482 × 10−9 |
0.4 | 0.12000907000446212 | 0.12000908068447211 | 1.068000998749596 × 10−8 |
0.5 | 0.12500954265746725 | 0.12500954933196154 | 6.674494290592747 × 10−9 |
0.6 | 0.12000907650344211 | 0.12000908068447211 | 4.181029994443364 × 10−9 |
0.7 | 0.10500768080412677 | 0.10500768307611698 | 2.271990207081131 × 10−9 |
0.8 | 0.08000543108796186 | 0.08000543151384461 | 4.258827457359615 × 10−10 |
0.9 | 0.045002617803451495 | 0.04500261769036607 | 1.130854229702826 × 10−10 |
1.0 | 8.38288175864 × 10−10 | 2.13968421631 × 10−18 | 8.38288173724192 × 10−10 |
Makinde & Aziz [34] | Present Result | ||
---|---|---|---|
0 | 0.0004166959732611298 | 0.00041669643079810236 | 4.57536972555978 × 10−10 |
0.1 | 0.0007242078568868499 | 0.0007242204230993113 | 1.256621246132922 × 10−8 |
0.2 | 0.0008700589609001264 | 0.0008700665516844415 | 7.59078431502528 × 10−9 |
0.3 | 0.0009242312498706879 | 0.0009242382030372055 | 6.953166517597101 × 10−9 |
0.4 | 0.0009367330606715411 | 0.0009367393712081855 | 6.310536644453524 × 10−9 |
0.5 | 0.0009375671371315745 | 0.0009375727826577018 | 5.645526127313893 × 10−9 |
0.6 | 0.000936734339945098 | 0.0009367393712081855 | 5.031263087466702 × 10−9 |
0.7 | 0.0009242337880723514 | 0.0009242382030372052 | 4.414964853774461 × 10−9 |
0.8 | 0.0008700627611325915 | 0.0008700665516844411 | 3.790551849616394 × 10−9 |
0.9 | 0.0007242172747296661 | 0.0007242204230993107 | 3.148369644634038 × 10−9 |
1.0 | 0.0004166939431660092 | 0.0004166964307981019 | 2.487632092722583 × 10−9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adesanya, S.O.; Yusuf, T.A.; Lebelo, R.S. Nonlinear Mixed Convection in a Reactive Third-Grade Fluid Flow with Convective Wall Cooling and Variable Properties. Mathematics 2022, 10, 4276. https://doi.org/10.3390/math10224276
Adesanya SO, Yusuf TA, Lebelo RS. Nonlinear Mixed Convection in a Reactive Third-Grade Fluid Flow with Convective Wall Cooling and Variable Properties. Mathematics. 2022; 10(22):4276. https://doi.org/10.3390/math10224276
Chicago/Turabian StyleAdesanya, Samuel Olumide, Tunde Abdulkadir Yusuf, and Ramoshweu Solomon Lebelo. 2022. "Nonlinear Mixed Convection in a Reactive Third-Grade Fluid Flow with Convective Wall Cooling and Variable Properties" Mathematics 10, no. 22: 4276. https://doi.org/10.3390/math10224276
APA StyleAdesanya, S. O., Yusuf, T. A., & Lebelo, R. S. (2022). Nonlinear Mixed Convection in a Reactive Third-Grade Fluid Flow with Convective Wall Cooling and Variable Properties. Mathematics, 10(22), 4276. https://doi.org/10.3390/math10224276