A Novel Ensemble Strategy Based on Determinantal Point Processes for Transfer Learning
Abstract
:1. Introduction
- Designing an ensemble strategy with Determinantal Point Processes, which enhance transfer performance and stability of models in cross domain.
- Extending the DPP with transferability and diversity to make it suitable for transfer learning.
- The ensemble strategy can be seen as a generic technique, which can be applied to different transfer algorithms.
2. Related Work
3. Ensemble Strategy Based on DPP Sampling
3.1. Subset Generation Based on DPP Sampling
3.2. Correlation Matrix L Construction
3.2.1. Transferability Measure of Instance with Evidence Theory
3.2.2. Diversity Measure of Instance
3.3. Model Ensemble
Algorithm 1 Ensemble strategy based on DPP sampling for transfer learning. |
|
4. Experiments
4.1. Data Sets
4.2. Experimental Study on Traditional Transfer Learning Methods
4.2.1. Experimental Setting
4.2.2. Test on Text Data
4.2.3. Test on Image Data
4.3. Experimental Study on Deep Transfer Model
4.3.1. Experimental Setting
4.3.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE 2020, 109, 43–76. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Ogunbona, P.; Xu, D. Recent advances in transfer learning for cross-dataset visual recognition: A problem-oriented perspective. ACM Comput. Surv. (CSUR) 2019, 52, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Shu, Y.; Wang, J.; Long, M. Transferability in Deep Learning: A Survey. arXiv 2022, arXiv:2201.05867. [Google Scholar]
- Iman, M.; Rasheed, K.; Arabnia, H.R. A Review of Deep Transfer Learning and Recent Advancements. arXiv 2022, arXiv:2201.09679. [Google Scholar]
- Dai, W.; Yang, Q.; Xue, G.R.; Yu, Y. Boosting for transfer learning. In Proceedings of the 24th International Conference on Machine Learning, Corvalis, OR, USA, 20–24 June 2007; pp. 193–200. [Google Scholar]
- Chen, M.; Weinberger, K.Q.; Blitzer, J. Co-training for domain adaptation. In Proceedings of the Advances in Neural Information Processing Systems, Granada, Spain, 12–15 December 2011; pp. 2456–2464. [Google Scholar]
- Courty, N.; Flamary, R.; Tuia, D.; Rakotomamonjy, A. Optimal transport for domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1853–1865. [Google Scholar] [CrossRef]
- Fernando, B.; Habrard, A.; Sebban, M.; Tuytelaars, T. Unsupervised visual domain adaptation using subspace alignment. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 2–8 December 2013; pp. 2960–2967. [Google Scholar]
- Duan, L.; Tsang, I.W.; Xu, D. Domain transfer multiple kernel learning. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 465–479. [Google Scholar] [CrossRef]
- Karbalayghareh, A.; Qian, X.; Dougherty, E.R. Optimal Bayesian transfer learning. IEEE Trans. Signal Process. 2018, 66, 3724–3739. [Google Scholar] [CrossRef] [Green Version]
- Bengio, Y. Deep learning of representations for unsupervised and transfer learning. In Proceedings of the ICML Workshop on Unsupervised and Transfer Learning, Bellevue, WA, USA, 2 July 2012; pp. 17–36. [Google Scholar]
- Venkateswara, H.; Chakraborty, S.; Panchanathan, S. Deep-learning systems for domain adaptation in computer vision: Learning transferable feature representations. IEEE Signal Process. Mag. 2017, 34, 117–129. [Google Scholar] [CrossRef]
- Wei, K.; Iyer, R.K.; Wang, S.; Bai, W.; Bilmes, J.A. Mixed robust/average submodular partitioning: Fast algorithms, guarantees, and applications. Adv. Neural Inf. Process. Syst. 2015, 28, 2233–2241. [Google Scholar]
- Qi, J.; Tejedor, J. Robust submodular data partitioning for distributed speech recognition. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 2254–2258. [Google Scholar]
- Liu, W.; Yue, X.; Zhong, C.; Zhou, J. Clustering Ensemble Selection with Determinantal Point Processes. In Proceedings of International Conference on Neural Information Processing, Sydney, NSW, Australia, 12–15 December 2019; pp. 621–633. [Google Scholar]
- Yue, X.; Xiao, X.; Chen, Y. Robust neighborhood covering reduction with determinantal point process sampling. Knowl.-Based Systems. 2020, 188, 105063. [Google Scholar] [CrossRef]
- Pan, S.J.; Tsang, I.W.; Kwok, J.T.; Yang, Q. Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 2010, 22, 199–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Zhai, C. Instance weighting for domain adaptation in NLP. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, Prague, Czech Republic, 23–30 June 2007; pp. 264–271. [Google Scholar]
- Huang, J.; Gretton, A.; Borgwardt, K.M.; Scholkopf, B.; Smola, A.J. Correcting Sample Selection Bias by Unlabeled Data. Adv. Neural Inf. Process. Syst. 2006, 19, 601–608. [Google Scholar]
- Chu, W.S.; De la Torre, F.; Cohn, J.F. Selective transfer machine for personalized facial action unit detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 3515–3522. [Google Scholar]
- Long, M.; Wang, J.; Ding, G.; Sun, J.; Yu, P.S. Transfer joint matching for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1410–1417. [Google Scholar]
- Yan, H.; Ding, Y.; Li, P.; Wang, Q.; Xu, Y.; Zuo, W. Mind the class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2272–2281. [Google Scholar]
- Long, M.; Wang, J.; Ding, G.; Sun, J.; Yu, P.S. Transfer feature learning with joint distribution adaptation. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 2–8 December 2013; pp. 2200–2207. [Google Scholar]
- Gong, B.; Shi, Y.; Sha, F.; Grauman, K. Geodesic flow kernel for unsupervised domain adaptation. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2066–2073. [Google Scholar]
- Sun, B.; Feng, J.; Saenko, K. Return of frustratingly easy domain adaptation. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016. [Google Scholar]
- Yang, J.; Yan, R.; Hauptmann, A.G. Cross-domain video concept detection using adaptive svms. In Proceedings of the 15th ACM international conference on Multimedia, Augsburg, Germany, 25–29 September 2007; pp. 188–197. [Google Scholar]
- Duan, L.; Tsang, I.W.; Xu, D.; Maybank, S.J. Domain transfer svm for video concept detection. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1375–1381. [Google Scholar]
- Duan, L.; Xu, D.; Tsang, I.W.H.; Luo, J. Visual event recognition in videos by learning from web data. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 1667–1680. [Google Scholar] [CrossRef]
- Long, M.; Wang, J.; Ding, G.; Pan, S.J.; Philip, S.Y. Adaptation regularization: A general framework for transfer learning. IEEE Trans. Knowl. Data Eng. 2013, 26, 1076–1089. [Google Scholar] [CrossRef]
- Cao, Y.; Long, M.; Wang, J. Unsupervised domain adaptation with distribution matching machines. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; Darrell, T. Decaf: A deep convolutional activation feature for generic visual recognition. In Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 647–655. [Google Scholar]
- Feng, C.; Zhong, C.; Wang, J.; Sun, J.; Yokota, Y. CANN: Coupled Approximation Neural Network for Partial Domain Adaptation. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Gold Coast, QLD, Australia, 1–5 November 2021; pp. 464–473. [Google Scholar]
- Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Deep transfer learning with joint adaptation networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2208–2217. [Google Scholar]
- Wang, J.; Feng, W.; Chen, Y.; Yu, H.; Huang, M.; Yu, P.S. Visual domain adaptation with manifold embedded distribution alignment. In Proceedings of the 26th ACM international conference on Multimedia, Seoul, Republic of Korea, 22–26 October 2018; pp. 402–410. [Google Scholar]
- Zhang, W.; Zhang, X.; Liao, Q.; Yang, W.; Lan, L.; Luo, Z. Robust normalized squares maximization for unsupervised domain adaptation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Virtual, 19–23 October 2020; pp. 2317–2320. [Google Scholar]
- Zhu, Y.; Zhuang, F.; Wang, J.; Chen, J.; Shi, Z.; Wu, W.; He, Q. Multi-representation adaptation network for cross-domain image classification. Neural Netw. 2019, 119, 214–221. [Google Scholar] [CrossRef]
- Kulesza, A.; Taskar, B. Learning determinantal point processes. arXiv 2011, arXiv:1202.3738. [Google Scholar]
- Dempster, A.P. A generalization of Bayesian inference. J. R. Stat. Soc. Ser. B (Methodol.) 1968, 30, 205–232. [Google Scholar] [CrossRef]
- Denoeux, T. 40 years of Dempster-Shafer theory. Int. J. Approx. Reason. 2016, 79, 1–6. [Google Scholar] [CrossRef]
- Yager, R.R.; Liu, L. Classic Works of the Dempster-Shafer Theory of Belief Functions; Springer: Berlin/Heidelberg, Germany, 2008; Volume 219. [Google Scholar]
- Liu, W.; Yue, X.; Chen, Y. Trusted Multi-View Deep Learning with Opinion Aggregation. In Proceedings of the 36th AAAI Conference on Artificial Intelligence, Palo Alto, CA, USA, 22 February–1 March 2022; pp. 7585–7593. [Google Scholar]
- Shafer, G. A mathematical theory of evidence turns 40. Int. J. Approx. Reason. 2016, 79, 7–25. [Google Scholar] [CrossRef]
- Blitzer, J.; Dredze, M.; Pereira, F. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, Prague, Czech Republic, 23–30 June 2007; pp. 440–447. [Google Scholar]
- Ghifary, M.; Balduzzi, D.; Kleijn, W.B.; Zhang, M. Scatter Component Analysis: A Unified Framework for Domain Adaptation and Domain Generalization. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1414–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Chen, Y.; Hao, S.; Feng, W.; Shen, Z. Balanced distribution adaptation for transfer learning. In Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017; pp. 1129–1134. [Google Scholar]
- Wang, J.; Chen, Y.; Yu, H.; Huang, M.; Yang, Q. Easy Transfer Learning By Exploiting Intra-Domain Structures. In Proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July2019; pp. 1210–1215. [Google Scholar]
- Bose, T.; Illina, I.; Fohr, D. Unsupervised domain adaptation in cross-corpora abusive language detection. In Proceedings of the SocialNLP 2021-The 9th International Workshop on Natural Language Processing for Social Media, Virtual, 10 June 2021. [Google Scholar]
- Long, M.; Cao, Y.; Wang, J.; Jordan, M. Learning transferable features with deep adaptation networks. In Proceedings of the International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 97–105. [Google Scholar]
- Ganin, Y.; Lempitsky, V. Unsupervised domain adaptation by backpropagation. In Proceedings of the International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 1180–1189. [Google Scholar]
- Zhu, Y.; Zhuang, F.; Wang, J.; Ke, G.; Chen, J.; Bian, J.; Xiong, H.; He, Q. Deep subdomain adaptation network for image classification. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
Notation | Description |
---|---|
, | source domain, target domain |
, | instance of source/target domain |
evidence set | |
evidence subset | |
label spcae | |
⊕ | Dempster’s combinational rule |
kernel function | |
feature mapping function | |
mass function | |
distance function | |
L | correlation matrix |
Abbreviation | Description |
---|---|
The ensemble strategy with improved DPP sampling | |
The ensemble strategy with information gain | |
The ensemble strategy with random sampling |
Methods | Ave acc | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TCA | 77.76 | 75.54 | 78.74 | 76.05 | 76.38 | 79.34 | 73.35 | 73.66 | 79.74 | 73.05 | 77.26 | 78.74 | 76.63 |
E-TCA | 81.21 | 83.31 | 84.79 | 81.95 | 82.41 | 82.13 | 76.60 | 79.89 | 82.57 | 78.10 | 79.28 | 80.80 | 81.09 |
CORAL | 70.76 | 66.21 | 70.00 | 73.05 | 68.70 | 71.96 | 69.90 | 65.71 | 72.35 | 67.45 | 68.61 | 75.68 | 70.03 |
E-CORAL | 75.79 | 73.48 | 74.77 | 76.57 | 73.51 | 74.25 | 76.90 | 71.15 | 75.36 | 73.52 | 71.35 | 76.44 | 74.42 |
GFK | 75.76 | 72.00 | 73.50 | 71.85 | 68.96 | 75.70 | 72.60 | 71.11 | 76.20 | 73.75 | 74.21 | 76.58 | 73.52 |
E-GFK | 78.00 | 77.39 | 76.42 | 79.13 | 74.98 | 79.02 | 77.23 | 73.41 | 78.05 | 75.69 | 75.08 | 78.91 | 76.94 |
JDA | 77.26 | 75.93 | 78.09 | 77.65 | 76.03 | 78.29 | 72.65 | 72.16 | 80.14 | 75.05 | 77.56 | 80.32 | 76.76 |
E-JDA | 80.09 | 82.14 | 84.23 | 80.31 | 81.71 | 81.99 | 77.38 | 77.71 | 82.88 | 80.05 | 79.81 | 81.39 | 80.81 |
KMM | 83.76 | 79.02 | 75.90 | 80.50 | 68.51 | 76.45 | 73.70 | 77.86 | 80.39 | 74.25 | 75.96 | 85.00 | 77.61 |
E-KMM | 85.98 | 81.44 | 85.47 | 85.22 | 82.79 | 85.82 | 79.00 | 84.08 | 84.52 | 82.59 | 84.16 | 87.78 | 84.07 |
BDA | 75.01 | 73.04 | 75.75 | 74.55 | 71.80 | 75.30 | 71.40 | 71.61 | 78.49 | 71.15 | 71.66 | 76.93 | 73.89 |
E-BDA | 79.22 | 77.51 | 82.41 | 80.01 | 78.06 | 78.26 | 75.70 | 74.93 | 81.76 | 77.11 | 74.88 | 80.44 | 78.36 |
SCA | 79.41 | 78.82 | 78.14 | 74.95 | 77.53 | 76.00 | 73.15 | 71.86 | 79.79 | 73.70 | 75.71 | 82.41 | 76.79 |
E-SCA | 83.52 | 79.88 | 79.80 | 82.01 | 78.30 | 78.15 | 76.45 | 74.80 | 82.22 | 74.89 | 79.00 | 84.33 | 79.45 |
EasyTL | 76.76 | 76.08 | 82.14 | 83.90 | 80.91 | 85.22 | 76.40 | 72.61 | 86.37 | 73.25 | 70.86 | 75.93 | 78.37 |
E-EasyTL | 79.44 | 83.06 | 83.21 | 85.09 | 85.66 | 85.00 | 78.13 | 77.77 | 86.93 | 77.49 | 77.81 | 79.03 | 81.55 |
Methods | Ave acc | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R-TCA | 75.29 | 79.14 | 78.06 | 75.10 | 74.89 | 77.61 | 71.25 | 74.19 | 77.20 | 74.33 | 77.00 | 79.204 | 76.11 |
I-TCA | 77.12 | 80.45 | 81.11 | 77.09 | 76.54 | 77.00 | 73.62 | 75.04 | 77.68 | 75.76 | 78.4 | 78.93 | 77.40 |
E-TCA | 81.21 | 83.31 | 84.79 | 81.95 | 82.41 | 82.13 | 76.60 | 79.89 | 82.57 | 78.10 | 79.28 | 80.80 | 81.09 |
R-CORAL | 69.12 | 63.44 | 71.93 | 76.25 | 70.98 | 70.67 | 71.18 | 65.45 | 73.14 | 65.71 | 65.47 | 76.84 | 70.01 |
I-CORAL | 69.89 | 64.38 | 72.05 | 77.22 | 71.14 | 72.53 | 71.97 | 68.39 | 74.26 | 66.83 | 67.92 | 76.42 | 71.08 |
E-CORAL | 75.79 | 73.48 | 74.77 | 76.57 | 73.51 | 74.25 | 76.90 | 71.15 | 75.36 | 73.52 | 71.35 | 76.44 | 74.42 |
R-GFK | 75.92 | 73.17 | 71.29 | 70.22 | 68.91 | 73.49 | 71.89 | 72.94 | 75.82 | 72.97 | 75.04 | 76.40 | 73.17 |
I-GFK | 77.04 | 73.9 | 73.81 | 74.62 | 70.46 | 75.18 | 73.55 | 72.87 | 76.34 | 74.11 | 74.23 | 75.99 | 74.34 |
E-GFK | 78.00 | 77.39 | 76.42 | 79.13 | 74.98 | 79.02 | 77.23 | 73.41 | 78.05 | 75.69 | 75.08 | 78.91 | 76.94 |
R-JDA | 77.80 | 76.47 | 79.14 | 75.03 | 76.45 | 77.36 | 71.08 | 71.78 | 79.94 | 76.17 | 77.14 | 80.02 | 76.53 |
I-JDA | 77.95 | 78.76 | 81.89 | 77.64 | 76.09 | 79.09 | 73.4 | 73.03 | 80.16 | 77.38 | 77.69 | 79.79 | 77.74 |
E-JDA | 80.09 | 82.14 | 84.23 | 80.31 | 81.71 | 81.99 | 77.38 | 77.71 | 82.88 | 80.05 | 79.81 | 81.39 | 80.81 |
R-KMM | 80.74 | 78.77 | 74.12 | 80.06 | 69.21 | 75.82 | 72.69 | 77.37 | 81.02 | 75.48 | 75.11 | 82.45 | 76.90 |
I-KMM | 82 | 79.82 | 79.67 | 82.61 | 74.76 | 79.37 | 72.7 | 79.63 | 81.97 | 79.58 | 78.18 | 82.77 | 79.42 |
E-KMM | 85.98 | 81.44 | 85.47 | 85.22 | 82.79 | 85.82 | 79.00 | 84.08 | 84.52 | 82.59 | 84.16 | 87.78 | 84.07 |
R-BDA | 73.52 | 72.13 | 74.21 | 72.78 | 70.71 | 73.48 | 72.05 | 70.40 | 78.25 | 70.74 | 72.09 | 75.00 | 72.95 |
I-BDA | 74.97 | 74.44 | 76.51 | 74.39 | 74.16 | 75.44 | 74.19 | 72.41 | 78.97 | 73.96 | 72.95 | 76.13 | 74.88 |
E-BDA | 79.22 | 77.51 | 82.41 | 80.01 | 78.06 | 78.26 | 75.70 | 74.93 | 81.76 | 77.11 | 74.88 | 80.44 | 78.36 |
R-SCA | 80.20 | 76.24 | 75.33 | 71.27 | 78.14 | 75.91 | 72.41 | 72.19 | 78.80 | 73.55 | 75.39 | 80.83 | 75.86 |
I-SCA | 79.88 | 77.41 | 76.03 | 75.19 | 77.23 | 76.07 | 74.08 | 71.98 | 80.8 | 73.26 | 75.9 | 81.51 | 76.61 |
E-SCA | 83.52 | 79.88 | 79.80 | 82.01 | 78.30 | 78.15 | 76.45 | 74.80 | 82.22 | 74.89 | 79.00 | 84.33 | 79.45 |
R-EasyTL | 76.80 | 76.11 | 81.74 | 83.47 | 81.20 | 84.31 | 75.24 | 73.37 | 86.57 | 72.50 | 72.11 | 76.54 | 78.33 |
I-EasyTL | 75.91 | 79.38 | 80.15 | 84.11 | 82.35 | 83.79 | 76.04 | 72.54 | 85.15 | 74.28 | 74.05 | 76.87 | 78.72 |
E-EasyTL | 79.44 | 83.06 | 83.21 | 85.09 | 85.66 | 85.00 | 78.13 | 77.77 | 86.93 | 77.49 | 77.81 | 79.03 | 81.55 |
Methods | Ave acc | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
TCA | 75.69 | 75.59 | 89.77 | 74.92 | 89.24 | 73.46 | 98.30 | 80.38 | 73.64 | 81.22 |
E-TCA | 83.41 | 81.17 | 90.14 | 89.78 | 90.28 | 79.55 | 98.41 | 84.51 | 78.37 | 86.18 |
CORAL | 83.7 | 74.58 | 89.98 | 78.64 | 85.70 | 79.16 | 99.66 | 77.14 | 74.98 | 82.62 |
E-CORAL | 84.75 | 81.79 | 91.25 | 81.43 | 87.88 | 81.52 | 97.10 | 82.33 | 76.57 | 84.96 |
GFK | 76.85 | 68.47 | 88.41 | 80.68 | 85.80 | 74.09 | 98.64 | 75.26 | 74.8 | 80.33 |
E-GFK | 81.76 | 80.25 | 90.02 | 86.66 | 88.78 | 80.04 | 98.87 | 82.37 | 77.35 | 85.12 |
JDA | 75.07 | 70.85 | 89.67 | 80.00 | 88.31 | 73.91 | 98.31 | 80.27 | 72.93 | 81.04 |
E-JDA | 82.72 | 81.17 | 92.45 | 87.33 | 89.91 | 78.51 | 98.39 | 86.85 | 78.43 | 86.20 |
KMM | 83.08 | 74.24 | 91.23 | 80.34 | 84.34 | 71.86 | 98.98 | 71.81 | 67.14 | 80.34 |
E-KMM | 84.81 | 78.88 | 92.35 | 83.47 | 85.52 | 78.16 | 98.00 | 80.70 | 72.77 | 83.85 |
BDA | 83.79 | 74.92 | 89.46 | 82.03 | 88.83 | 81.30 | 99.31 | 80.85 | 76.49 | 84.11 |
E-BDA | 86.51 | 76.68 | 91.94 | 86.59 | 88.78 | 83.22 | 97.02 | 86.70 | 80.08 | 86.39 |
MEDA | 87.71 | 85.76 | 91.07 | 84.07 | 92.90 | 87.89 | 98.98 | 93.21 | 86.73 | 89.81 |
E-MEDA | 87.73 | 89.63 | 92.61 | 92.71 | 93.81 | 89.97 | 98.80 | 93.67 | 87.93 | 91.87 |
EasyTL | 81.30 | 72.88 | 90.50 | 74.91 | 83.00 | 73.64 | 93.22 | 74.53 | 67.31 | 79.03 |
E-EasyTL | 83.09 | 80.54 | 90.58 | 81.25 | 85.79 | 79.11 | 91.66 | 79.58 | 72.54 | 82.68 |
Methods | Ave acc | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
R-TCA | 72.87 | 74.82 | 86.38 | 75.10 | 88.17 | 70.05 | 97.28 | 81.19 | 73.61 | 79.94 |
I-TCA | 75.94 | 76.33 | 86.91 | 76.71 | 88.53 | 73.42 | 97.11 | 82.4 | 75.27 | 81.40 |
E-TCA | 83.41 | 81.17 | 90.14 | 89.78 | 90.28 | 79.55 | 98.41 | 84.51 | 78.37 | 86.18 |
R-CORAL | 83.80 | 74.22 | 87.29 | 78.37 | 84.96 | 80.01 | 97.21 | 78.00 | 74.31 | 82.02 |
I-CORAL | 83.86 | 76.14 | 87.94 | 79.15 | 85.29 | 79.88 | 97.72 | 80.34 | 75.1 | 82.82 |
E-CORAL | 84.75 | 81.79 | 91.25 | 81.43 | 87.88 | 81.52 | 97.10 | 82.33 | 76.57 | 84.96 |
R-GFK | 77.02 | 70.21 | 86.39 | 80.22 | 84.07 | 74.34 | 97.21 | 75.52 | 73.69 | 79.85 |
I-GFK | 78.34 | 75.75 | 87.56 | 82.44 | 86.59 | 76.64 | 97.19 | 77.78 | 74.7 | 81.89 |
E-GFK | 81.76 | 80.25 | 90.02 | 86.66 | 88.78 | 80.04 | 98.87 | 82.37 | 77.35 | 85.12 |
R-JDA | 75.43 | 71.43 | 88.53 | 79.29 | 87.19 | 72.46 | 96.17 | 80.04 | 73.15 | 80.41 |
I-JDA | 77.95 | 73 | 89.39 | 81.48 | 87.47 | 74.86 | 97.09 | 82.66 | 75.81 | 82.19 |
E-JDA | 82.72 | 81.17 | 92.45 | 87.33 | 89.91 | 78.51 | 98.39 | 86.85 | 78.43 | 86.20 |
R-KMM | 83.22 | 74.63 | 90.17 | 78.78 | 83.79 | 71.11 | 96.74 | 70.04 | 69.26 | 79.75 |
I-KMM | 83.46 | 75 | 89.61 | 80.35 | 83.91 | 73.71 | 97.56 | 75.52 | 70.06 | 81.02 |
E-KMM | 84.81 | 78.88 | 92.35 | 83.47 | 85.52 | 78.16 | 98.00 | 80.70 | 72.77 | 83.85 |
R-BDA | 83.33 | 73.81 | 87.35 | 81.97 | 88.91 | 80.05 | 96.95 | 81.04 | 77.38 | 83.42 |
I-BDA | 84.08 | 74.87 | 88.23 | 84.66 | 87.52 | 81.45 | 96.07 | 83.52 | 78.81 | 84.36 |
E-BDA | 86.51 | 76.68 | 91.94 | 86.59 | 88.78 | 83.22 | 97.02 | 86.70 | 80.08 | 86.39 |
R-MEDA | 87.77 | 85.21 | 90.55 | 84.83 | 91.10 | 86.64 | 95.80 | 92.68 | 85.36 | 88.88 |
I-MEDA | 87.14 | 84.24 | 91.32 | 87.49 | 91.93 | 87.26 | 96.9 | 92 | 86.37 | 89.41 |
E-MEDA | 87.73 | 89.63 | 92.61 | 92.71 | 93.81 | 89.97 | 98.80 | 93.67 | 87.93 | 91.87 |
R-EasyTL | 80.74 | 71.44 | 89.77 | 73.82 | 83.79 | 71.55 | 92.56 | 74.18 | 68.56 | 78.49 |
I-EasyTL | 81.49 | 73.57 | 89.91 | 74.01 | 83.17 | 74.37 | 90.09 | 75.52 | 70.23 | 79.15 |
E-EasyTL | 83.09 | 80.54 | 90.58 | 81.25 | 85.79 | 79.11 | 91.66 | 79.58 | 72.54 | 82.68 |
Methods | Ave acc | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DAN | 43.60 | 57.00 | 67.90 | 45.80 | 56.50 | 60.40 | 44.00 | 43.60 | 67.70 | 63.10 | 51.50 | 74.30 | 56.28 |
E-DAN | 45.96 | 60.05 | 69.72 | 48.51 | 58.91 | 62.04 | 46.33 | 44.86 | 68.19 | 64.51 | 53.60 | 76.77 | 58.29 |
DANN | 45.60 | 59.30 | 70.10 | 47.00 | 58.50 | 60.90 | 46.10 | 43.70 | 68.50 | 63.20 | 51.80 | 76.80 | 57.63 |
E-DANN | 45.6 | 61.13 | 72.15 | 47.9 | 60.51 | 61.84 | 48.88 | 46.09 | 70.19 | 66.65 | 52.09 | 79.41 | 59.37 |
JAN | 45.90 | 61.20 | 68.90 | 50.40 | 59.70 | 61.00 | 45.80 | 43.40 | 70.30 | 63.90 | 52.40 | 76.80 | 58.31 |
E-JAN | 46.61 | 64.08 | 70.53 | 52.94 | 62.66 | 61.99 | 48.85 | 47.39 | 73.64 | 65.55 | 54.10 | 79.56 | 60.66 |
MRAN | 53.80 | 68.60 | 75.00 | 57.30 | 68.50 | 68.30 | 58.50 | 54.60 | 77.50 | 70.40 | 60.00 | 82.20 | 66.23 |
E-MRAN | 56.66 | 70.14 | 77.63 | 59.46 | 69.78 | 70.04 | 59.14 | 55.07 | 77.93 | 73.58 | 62.21 | 83.31 | 67.91 |
DSAN | 54.40 | 70.80 | 75.40 | 60.40 | 67.80 | 68.00 | 62.60 | 55.90 | 78.50 | 73.80 | 60.60 | 83.10 | 67.61 |
E-DSAN | 56.17 | 72.68 | 75.96 | 62.26 | 69.77 | 69.89 | 64.44 | 58.83 | 79.84 | 74.09 | 62.34 | 85.92 | 69.35 |
Methods | Ave acc | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R-DAN | 43.67 | 55.20 | 66.38 | 47.78 | 56.31 | 61.85 | 43.48 | 43.84 | 65.50 | 61.49 | 52.71 | 75.19 | 56.12 |
I-DAN | 43.74 | 56.22 | 67.42 | 46.94 | 56.79 | 61.7 | 44.51 | 43.26 | 66.62 | 62.36 | 52.42 | 75.8 | 56.48 |
E-DAN | 45.96 | 60.05 | 69.72 | 48.51 | 58.91 | 62.04 | 46.33 | 44.86 | 68.19 | 64.51 | 53.60 | 76.77 | 58.29 |
R-DANN | 45.69 | 57.11 | 67.44 | 45.83 | 58.61 | 58.37 | 46.73 | 42.19 | 69.46 | 62.74 | 52.69 | 74.57 | 56.79 |
I-DANN | 45.38 | 57.78 | 68.74 | 46.22 | 58.89 | 59.61 | 46.96 | 44.46 | 69.07 | 62.85 | 51.14 | 75.1 | 57.18 |
E-DANN | 45.60 | 61.13 | 72.15 | 47.90 | 60.51 | 61.84 | 48.88 | 46.09 | 70.19 | 66.65 | 52.09 | 79.41 | 59.37 |
R-JAN | 43.89 | 60.01 | 66.31 | 49.4 | 59.35 | 61.88 | 44.67 | 45.19 | 70.45 | 61.19 | 51.40 | 78.37 | 57.68 |
I-JAN | 44.1 | 62.36 | 67.58 | 50.29 | 60.79 | 61.46 | 45.58 | 46.42 | 70.86 | 62.28 | 52.25 | 78.66 | 58.55 |
E-JAN | 46.61 | 64.08 | 70.53 | 52.94 | 62.66 | 61.99 | 48.85 | 47.39 | 73.64 | 65.55 | 54.10 | 79.56 | 60.66 |
R-MRAN | 53.33 | 68.10 | 73.96 | 55.37 | 66.43 | 67.17 | 56.39 | 52.25 | 75.41 | 68.88 | 58.04 | 81 | 64.69 |
I-MRAN | 54.92 | 68.8 | 74.52 | 56.38 | 67.92 | 68.36 | 57.47 | 53.39 | 76.18 | 70.08 | 59.53 | 81.97 | 65.79 |
E-MRAN | 56.66 | 70.14 | 77.63 | 59.46 | 69.78 | 70.04 | 59.14 | 55.07 | 77.93 | 73.58 | 62.21 | 83.31 | 67.91 |
R-DSAN | 54.51 | 70.17 | 74.78 | 61.28 | 66.2 | 66.68 | 62.90 | 54.35 | 78.77 | 72.35 | 59.91 | 81.55 | 66.95 |
I-DSAN | 55.28 | 70.64 | 74.82 | 61.68 | 68.22 | 67.19 | 63.82 | 55.46 | 79.04 | 73.14 | 60.01 | 82.05 | 67.61 |
E-DSAN | 56.17 | 72.68 | 75.96 | 62.26 | 69.77 | 69.89 | 64.44 | 58.83 | 79.84 | 74.09 | 62.34 | 85.92 | 69.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Y.; Zhang, B.; Yue, X.; Xu, Z. A Novel Ensemble Strategy Based on Determinantal Point Processes for Transfer Learning. Mathematics 2022, 10, 4409. https://doi.org/10.3390/math10234409
Lv Y, Zhang B, Yue X, Xu Z. A Novel Ensemble Strategy Based on Determinantal Point Processes for Transfer Learning. Mathematics. 2022; 10(23):4409. https://doi.org/10.3390/math10234409
Chicago/Turabian StyleLv, Ying, Bofeng Zhang, Xiaodong Yue, and Zhikang Xu. 2022. "A Novel Ensemble Strategy Based on Determinantal Point Processes for Transfer Learning" Mathematics 10, no. 23: 4409. https://doi.org/10.3390/math10234409
APA StyleLv, Y., Zhang, B., Yue, X., & Xu, Z. (2022). A Novel Ensemble Strategy Based on Determinantal Point Processes for Transfer Learning. Mathematics, 10(23), 4409. https://doi.org/10.3390/math10234409