Solution Properties of a New Dynamic Model for MEMS with Parallel Plates in the Presence of Fringing Field
Abstract
:1. Introduction
- x is the spatial variable, while t is the time variable;
- , represents a bounded domain with a sufficiently smooth boundary (i.e., the device electrostatic MEMS with a deformable plate under study);
- is the profile of the deformable plate;
- represents the derivative with respect to time;
- is the outward pointing normal to ;
- is a bounded real function that is related to anisotropic damping phenomena;
2. Some Specifications on the Electrostatic MEMS Device and Its Analytical Model with Fringing Field
- , according to the plate theory [1], takes into account the contributions due to bending and torsional curvatures;
- Since the edges of the deformable plate are anchored, once V is applied, the deformable plate rises with an evident increase in its surface (generating a “stretching effect”). Consequently, if the plate is under elastic deformation, the mechanical restoring force will necessarily be proportional to the aforementioned surface increase. The first addend of the right side of (18) contains the function that can be expressed as
The Contribution Due to the Effects of the Fringing Field According to Pelesko and Driscoll Approach
3. Some Properties of the Model with Fringing Field
- Model (20) considers the effects due to the fringing field using a term,
- The proposed model, through the and , takes into account the fatigue phenomena that can arise on the deformable plate following prolonged use of the device;
- The amplitude of the variation of the electrostatic capacitance of the device, during the deformation of the plate, depends on the geometry of the device as well as on the (additional) capacitance, opposing significant variations of V. The term containing in the proposed model takes this phenomenon into account;
- in the model, which takes into account the dielectric properties of the plates, appears in the capacitive term where these properties have the greatest influence. Moreover, because must be a measurable function so that , (S, suitable constant).
4. The Dynamic Model with Contribution Due to Fringing Field: Main Results
5. A Penalization Approach According to Campanato’s Theory: The Problem of Existence and Uniqueness
- (i)
- There exists such that ;
- (ii)
- The mapping is continuous on ;
- (iii)
- There exists two constants, and , and a neighborhood of , indicated by , such that and , we achieve
- (iv)
- is injective;
- (v)
- is a neighborhood of .
5.1. Proofs of Theorem 1 and Lemma 1
6. A Result concerning the Regularity (Proof of Theorem 2)
7. Possible Uses of the Device Studied
8. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
MEMS | micro-electro-mechanical systems |
smooth bounded domain | |
V | external electrostatic potential |
x | spatial variable |
t | time |
unknown profile of the deflecting plate | |
the dimensionless parameter that weighs the capacitance of the MEMS | |
drop-in voltage | |
bounded real function taking into account the dielectric properties of the material | |
the real parameter that weighs the effect of the fringing field | |
N | dspace dimension |
outward pointing normal to | |
bounded real function related to anisotropic damping phenomena | |
d | distance between the plates in the MEMS |
L | the length of the MEMS |
load function | |
the mechanical tension of the deformable plate at rest | |
the permittivity of free space | |
source voltage | |
the capacitance of the fixed series capacitor | |
C | the capacitance of the MEMS device |
D | flexural rigidity |
, | specific weight functions |
References
- Ai, S.; Pelesko, J.A. Dynamics of a Canonical Electrostatic MEMS/NEMS System. J. Dyn. Differ. Equ. 2008, 20, 609–641. [Google Scholar] [CrossRef]
- Fitzgerald, A.M.; White, C.D.; Chung, C.C. MEMS Produc Development; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Di Barba, P.; Fattorusso, L.; Versaci, M. Electrostatic-Elastic MEMS with Fringing Field: A Problem of Global Existence. Mathematics 2022, 10, 54. [Google Scholar] [CrossRef]
- Hasan, M.H.; Abbasalipour, A.; Nikfarjam, H.; Pourkamali, S.; Emad-Ud-Din, M.; Jafari, R.; Alsaleem, F. Exploiting Pull-In/Pull-Out Hysteresis in Electrostatic MEMS Sensor Networks to Realize a Novel Sensing Continuous-Time Recurrent Neural Network. Micromachines 2021, 12, 268. [Google Scholar] [CrossRef] [PubMed]
- Morkvenaite-Vilkonciene, I.; Bucinskas, V.; Subaciute-Zemaitiene, J.; Sutinys, E.; Virzonis, D.; Dzedzickis, A. Development of Electrostatic Microactuators: 5-Year Progress in Modeling, Design, and Applications. Micromachines 2022, 13, 1256. [Google Scholar] [CrossRef]
- Khaled, A.; Salman, A.M.; Aljehani, N.S.; Alzahem, I.F.; Almikhlafi, R.S.; Noor, R.M.; Seddiq, Y.M.; Alghamdi, M.S.; Soliman, M.; Mahmoud, M.A.E. An Electrostatic MEMS Roll-Pitch Rotation Rate Sensor with In-Plane Drive Mode. Sensors 2022, 22, 702. [Google Scholar] [CrossRef]
- Chung, M.; Jeong, H.; Kim, Y.-K.; Lim, S.; Baek, C.-W. Design and Fabrication of Millimeter-Wave Frequency-Tunable Metamaterial Absorber Using MEMS Cantilever Actuators. Micromachines 2022, 13, 1354. [Google Scholar] [CrossRef]
- Xu, R.-J.; Lin, Y.-S. Actively MEMS-Based Tunable Metamaterials for Advanced and Emerging Applications. Electronics 2022, 11, 243. [Google Scholar] [CrossRef]
- Greco, A.; Costantino, D.; Morabito, F.C.; Versaci, M. A Morlet Wavelet Classification Technique for ICA Filtered sEMG Experimental Data. In Proceedings of the International Joint Conference on Neural Networks, Portland, OR, USA, 20–24 July 2003. [Google Scholar]
- Versaci, M.; Jannelli, A.; Morabito, F.C.; Angiulli, G. A Semi-Linear Elliptic Model for a Circular Membrane MEMS Device Considering the Effect of the Fringing Field. Sensors 2021, 21, 5237. [Google Scholar] [CrossRef]
- Angiulli, G.; Jannelli, A.; Morabito, F.C.; Versaci, M. Reconstructing the Membrane Detection of a 1D Electrostatic-Driven MEMS Device buy the Shooting Method: Convergence Analysis and Ghost Solution Identification. Comput. Appl. Math. 2018, 37, 4484–4498. [Google Scholar] [CrossRef]
- Tseng, S.H. CMOS MEMS Design and Fabrication Platform. Front. Mech. Eng. 2022, 8, 894484. [Google Scholar] [CrossRef]
- Girija Sravani, K.; Rao, S. A modified proposed capacitance model for step structure capacitive RF MEMS switch by incorporating fringing field effects. Int. J. Electron. 2020, 107, 1822–1843. [Google Scholar] [CrossRef]
- Faraci, D.; Zega, V.; Nastro, A.; Comi, C. Identification of MEMS Geometric Uncertainties through Homogenization. Micro 2022, 2, 564–574. [Google Scholar] [CrossRef]
- Salem, M.S.; Zekry, A.; Abouelatta, M.; Shaker, A.; Salem, M.S. Validation and Evaluation of a Behavioral Circuit Model of an Enhanced Electrostatic MEMS Converter. Micromachines 2022, 13, 868. [Google Scholar] [CrossRef] [PubMed]
- Kuru, K.; Ansell, D.; Jones, M.; Watkinson, B.J.; Caswell, N.; Leather, P.; Lancaster, A.; Sugden, P.; Briggs, E.; Davies, C.; et al. Intelligent Autonomous Treatment of Bedwetting Using Non-Invasive Wereable Advanced Mechatronics Systems and MEMS Sensors. Med. Biol. Eng. Comput. 2020, 58, 943–965. [Google Scholar] [CrossRef] [Green Version]
- Podbiel, D.; Laermer, F.; Zengerle, R.; Hoffmann, J. Fusing MEMS Technology with Lab-on-Chip: Nanoliter-Scale Silicon Microcavity Arrays for Digital DNA Quantification and Multiplex Testing. Microsyst. Nanoeng. 2020, 6, 328–341. [Google Scholar] [CrossRef]
- Ren, Z.; Chang, Y.; Ma, Y.; Shih, K.; Dong, B.; Lee, C. Leveraging of MEMS Technologies for Otical Metamaterial Applications. Adv. Opt. Mater. 2020, 8, 1900653. [Google Scholar] [CrossRef]
- Chircov, C.; Grumezescu, A.M. Microelectromechanical Systems (MEMS) for Biomedical Applications. Micromachines 2022, 13, 164. [Google Scholar] [CrossRef]
- Alodhayb, A. Modeling of an Optically Heated MEMS-Based Micromechanical Bimaterial Sensor for Heat Capacitance Measurements of Single Biological Cells. Sensors 2020, 20, 215. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Chen, S.; Mou, Y.; Hu, F. Electrostatic-Fluid-Structure 3D Numerical Simulation of MEMS Electrostatic Comb Resonator. Sensors 2022, 22, 1056. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Wang, Y.; Quan, A.; Keshavarz, M.; Madeira, B.P.; Zhang, H.; Wang, C.; Kraft, M. A Review on Coupled Bulk Acoustic Wave MEMS Resonators. Sensors 2022, 22, 3857. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Xiao, Y.; Cao, L.; Guo, Z.S. A Compensation Method for Nonlinear Vibration of Silicon-Micro Resonant Sensor. Sensors 2021, 21, 2545. [Google Scholar] [CrossRef] [PubMed]
- Vikas Garud, M.; Pratap, R. A Novel MEMS Speaker with Peripheral Electrostatic Actuation. J. Microelectromech. Syst. 2020, 29, 592–599. [Google Scholar] [CrossRef]
- Arabi, M.; Alghamdi, M.; Kabel, K.; Labena, A.; Gado, W.S.; Mavani, B.; Scott, A.J.; Penlidis, A.; Yavuz, M.; Abdel-Rahman, E. Detection of Volatile Organic Compounds by Using MEMS Sensors. Sensors 2022, 22, 4102. [Google Scholar] [CrossRef] [PubMed]
- Asher, A.; Gilat, R.; Krylov, S. Natural Frequencies and Modes of Electrostatically Actuated Curved Bell-Shaped Microplates. Appl. Sci. 2022, 12, 2704. [Google Scholar] [CrossRef]
- Tunc, T.; Sarikaya, M.Z.; Yaldiz, H. Fractional Hermit Hadamard’s Type Inequality for the Co-Ordinated Convex Function. TWMS J. Pure Appl. Math. 2020, 11, 3–29. [Google Scholar]
- Noor, M.A.; Noor, K.I. Some New Classes of Strongly Generalized Preinvex Function. TWMS J. Pure Appl. Math. 2021, 12, 181–182. [Google Scholar]
- Li, M.; Luo, A.; Luo, W.; Wang, F. Recent Progress on Mechanical Optimization of MEMS Electret-Based Electrostatic Vibration Energy Harvesters. J. Microelectromech. Syst. 2022, 31, 726–740. [Google Scholar] [CrossRef]
- Mousavi, M.; Alzgool, M.; Lopez, D.; Towfighian, S. Open-Loop Control of Electrostatic Levitation Actuators to Enhance the Travel-Range of Optical Sqwitches. Sens. Actuators A Phys. 2022, 338, 113453. [Google Scholar] [CrossRef]
- Williams, R.P.; Vatankhah, E.; Hall, N.A. Multidegree-of-Freedom State-Space Modeling of Nonlinear Pull-in Dynamics of an Electrostatic MEMS Microphone. J. Microelectromech. Syst. 2022, 31, 589–598. [Google Scholar] [CrossRef]
- Alneamy, A.M.; Ouakad, H.M. Inertia Mass Bio-Sensors Based on Snap-Through Phenomena In Electrostatic MEMS Shallow Arch Resonator. Int. J. Mech. Sci. 2022, 238, 107825. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Zhang, L.; He, W.M.; Yang, L.; Zhang, C.; Wang, Z.Y.; Zhang, R.; Chen, J.H.; Wang, S.; Zang, S.Q.; et al. High-Performance Primary Explosives Derived From Copper Thiolate Cluster-Assembled Materials for Micro-Initiating Device. Chem. Eng. J. 2020, 389, 124455. [Google Scholar] [CrossRef]
- Abozyd, S.; Toraya, A.; Gaber, N. Design and Modeling of Fiber-Free Optical MEMS Accelerometer Enabling 3D Measurements. Micromachines 2022, 13, 343. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Wang, Y.; Li, Q.; Habib, K. Reset Noise Sampling Feedforward Technique (RNSF) for Low Noise MEMS Capacitive Accelerometer. Electronics 2022, 11, 2693. [Google Scholar] [CrossRef]
- Joshua, S.; Shokri, A.; Marian, D. Variable Step Hybrid Block Method for the Approximation of Kepler Problem. Fractal Fract. 2022, 6, 343. [Google Scholar]
- Shokri, A.; Saadat, H. P-Stability, TF and VSDPL Technique in Obrechkoff Methods for the Numerical Solution of the Schroedinger Equation. Bull. Iran. Math. Soc. 2016, 42, 687–706. [Google Scholar]
- Taussiff, M.; Ouakad, H.M.; Alqahtani, H. Global Nonlinear Dynamics of MEMS Arches Actuated by Fringing-Field Electrostatic Field. Arab. J. Sci. Eng. 2020, 45, 5959–5975. [Google Scholar] [CrossRef]
- Da Costa, E.F.; De Oliveira, N.E.; Morais, F.J.O.; Carvalhaes-Dias, P.; Duarte, L.F.C.; Cabot, A.; Siqueira Dias, J.A. A Self-Powered and Autonomous Fringing Field Capacitive Sensor Integrated into a Micro Sprinkler Spinner to Measure Soil Water Content. Sensors 2017, 17, 575. [Google Scholar] [CrossRef] [Green Version]
- Zaitsev, I.; Bereznychenko, V.; Bajaj, M.; Taha, I.B.M.; Belkhier, Y.; Titko, V.; Kamel, S. Calculation of Capacitive-Based Sensors of Rotating Shaft Vibration for Fault Diagnostic Systems of Powerful Generators. Sensors 2022, 22, 1634. [Google Scholar] [CrossRef]
- Moheimani, R.; Gonzalez, M.; Dalir, H. An Integrated Nanocomposite Proximity Sensor: Machine Learning-Based Optimization, Simulation, and Experiment. Nanomaterials 2022, 12, 1269. [Google Scholar] [CrossRef]
- Hu, W.; Wu, B.; Srivastava, S.K.; Ay, S.U. Comparative Study and Simulation of Capacitive Sensors in Microfluidic Channels for Sensitive Red Blood Cell Detection. Micromachines 2022, 13, 1654. [Google Scholar] [CrossRef]
- Gua, K.; Laskar, N.M.; Gogoi, H.J.; Baishnab, K.L.; Rao, K.S. A New Analytical Model Switching Time of a Perforated MEMS Switch. Microsyst. Technol. 2020, 26, 3143–3152. [Google Scholar] [CrossRef]
- Ghergu, M.; Miyamoto, Y. Radial Regular and Rupture Solutions for a MEMS Model wtih Fringing Field. aXiv 2020, arXiv:2007.01406. [Google Scholar]
- Petre, A.R.; Craciunescu, R.; Fratu, O. Design, Implementation and Simulation of a Fringing Field Capacitive Humidity Sensor. Sensors 2020, 20, 5644. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Ye, D. On MEMS Equation with Fringing Field. Proc. Am. Math. Soc. 2010, 138, 1693–1699. [Google Scholar] [CrossRef] [Green Version]
- Di Barba, P.; Fattorusso, L.; Versaci, M. Curvature-Dependent Electrostatic Field as a Principle for Modelling Membrane MEMS device with Fringing Field. Comput. Appl. Math. 2021, 40, 87. [Google Scholar] [CrossRef]
- Versaci, M.; Angiulli, G.; Fattorusso, L.; Jannelli, A. On the Uniqueness of the Solution for a Semi-Linear Elliptic Boundary Value Problem of the Membrane MEMS Device for Reconstructing the Membrane Profile in Absence of Ghost Solutions. Int. J. Non-Linear Mech. 2019, 109, 24–31. [Google Scholar] [CrossRef]
- Versaci, M.; Angiulli, G.; Jannelli, A. Recovering of the Membrane Profile of an Electrostatic Circular MEMS by a Three-Stage Lobatto Procedure: A Convergence Analysis in the Absence of Ghost Solutions. Mathematics 2020, 8, 487. [Google Scholar] [CrossRef] [Green Version]
- Cassani, D.; Fattorusso, L.; Tarsia, A. Global Existence for Nonlocal MEMS. Nonlinear Anal. 2011, 74, 5722–5726. [Google Scholar] [CrossRef]
- Di Barba, P.; Versaci, M. Deformable MEMS with Fringing Field: Models, Uniqueness Conditions and Membrane Profile Recovering. Electronics 2022, 11, 798. [Google Scholar]
- Cassani, D.; Fattorusso, L.; Tarsia, A. Nonlocal Dynamic Problems with Singular Nonlinearities and Applications to MEMS. Anal. Topol. Nonlinear Differ. Equ. 2014, 85, 187–206. [Google Scholar]
- Miyasita, T. Convergence of Solutions of a Nonlocal Biharmonic MEMS Equation with the Fringing Field. J. Math. Anal. Appl. 2017, 454, 265–284. [Google Scholar] [CrossRef]
- Hou, D.; Wang, H.; Zhang, C. Positivity-Preserving and Unconditionally Energy Stable Numerical Schemes for MEMS model. Appl. Numer. Math. 2022, 181, 503–517. [Google Scholar] [CrossRef]
- Guerra, I. A semilinear problem with a gradient term in the nonlinearity. Discret. Contin. Dyn. Syst. 2022, 42, 137–162. [Google Scholar] [CrossRef]
- Miyasita, T. On a Nonlocal Biharmonic MEMS Equation with the Navier Boundary Condition. Sci. Math. Jpn. 2017, 80, 189–208. [Google Scholar]
- Lin, F.; Yang, Y. Nonlinear Non-local Elliptic Equation Modelling Electrostatic Actuator. Proc. R. Soc. Math. Phys. Eng. Sci. 2007, 463. [Google Scholar] [CrossRef]
- Campanato, S. Sistemi Ellittici in Forma Divergenza: Regolaritá all’Interno; Scuola Normale Superiore di Pisa: Pisa, Italy, 1980. [Google Scholar]
- Pelesko, J.A.; Triolo, A.A. Nonlocal Problems in MEMS Device Control. J. Eng. Math. 2001, 41, 345–366. [Google Scholar] [CrossRef]
- Cassani, D.; d’O, J.M.; Ghoussoub, N. On a Fourth Order Elliptic Problem with a Singular Nonlinearity. Adv. Nonlinear Stud. 2011, 9, 189–209. [Google Scholar] [CrossRef]
- Tarsia, A. Differential Equations and Implicit Functions: A Generalization of the Near Operator Theorem. Topol. Methods Nonlinear Anal. 1998, 11, 115–133. [Google Scholar] [CrossRef]
- Girbau, D.; Lazaro, A.; Pradell, L. Characterization of dynamics and power handling of RF MEMS using vector measurement techniques. IEEE Trans. Microw. Theory Tech. 2004, 52, 2627–2633. [Google Scholar] [CrossRef]
- de Groot, W.A.; Webster, J.R.; Felnhofer, D.; Gusev, E.P. Review of Device and Reliability Physics of Dielectrics in Electrostatically Driven MEMS Devices. IEEE Trans. Device Mater. Reliab. 2009, 9, 190–202. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Barba, P.; Fattorusso, L.; Versaci, M. Solution Properties of a New Dynamic Model for MEMS with Parallel Plates in the Presence of Fringing Field. Mathematics 2022, 10, 4541. https://doi.org/10.3390/math10234541
Di Barba P, Fattorusso L, Versaci M. Solution Properties of a New Dynamic Model for MEMS with Parallel Plates in the Presence of Fringing Field. Mathematics. 2022; 10(23):4541. https://doi.org/10.3390/math10234541
Chicago/Turabian StyleDi Barba, Paolo, Luisa Fattorusso, and Mario Versaci. 2022. "Solution Properties of a New Dynamic Model for MEMS with Parallel Plates in the Presence of Fringing Field" Mathematics 10, no. 23: 4541. https://doi.org/10.3390/math10234541
APA StyleDi Barba, P., Fattorusso, L., & Versaci, M. (2022). Solution Properties of a New Dynamic Model for MEMS with Parallel Plates in the Presence of Fringing Field. Mathematics, 10(23), 4541. https://doi.org/10.3390/math10234541