Model Selection for High Dimensional Nonparametric Additive Models via Ridge Estimation
Abstract
:1. Introduction
2. Methodology
Algorithm 1: GRIE-EBIC algorithm. |
Initialization: Input ,
, n, , , , , L.
Step (i): Compute the GRIE screening procedure 1: Calculate ridge estimator ; 2: Sort in decreasing order and select the top n index set which is denoted by ; Step (ii): Direct decreasing solution path 3: For , do : Let and compute the sum of squared residuals ; : Compute EBIC: ; : If and , compute and stop; 4: Compute the difference of the EBIC to obtain the decreasing solution path ; 5: Find the decreasing index set ; Step (iii): Forward decreasing solution path 6: Compute and 7: For , do Let , compute and 8: Find decreasing solution path ; Output final index set . |
3. Asymptotic Properties
3.1. Assumptions
- A1
- Assume has a spherically symmetric distribution, and there exists some positive and such that
- A2
- Assume there exists some positive constant such that, for any ,
- A3
- Assume that (i) there exists some such that and for any ; (ii) ; (iii) , where are some positive constants and .
- A4
- (i) for some positive constant ; (ii) for some positive sequence ; (iii) , .
- A5
- (i) ; (ii) For any integer N with , there exists positive constant such that
3.2. Main Theorems
4. Simulations
5. Real Data
5.1. Boston Housing Data
- (i)
- Under FAR, 3 covariates are selected, denoted by “model ()”.
- (ii)
- Under GRIE, we receive 6 covariates , denoted by “model ()”.
- (iii)
- Under C-FS, there are 15 covariates chosen. They are , denoted by “model ()”.
5.2. Arabidopsis thaliana Gene Data
- (i)
- Under FAR, we get one gene , denoted by“model ()”;
- (ii)
- Under GRIE, three genes are chosen, denoted by “model ()”;
- (iii)
- Under C-FS, there nine genes were chosen, which are , and it is denoted by “model ()”.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- (i)
- for and any fixed vector with , there exists constants and with such that
- (ii)
- for any , there exists positive constant such thatholds for any and ;
- (iii)
- for any , the following inequalityholds.
- (i)
- and ;
- (ii)
- for some , , and ;
- (iii)
- for some constant ;
- (iv)
References
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Fan, J.; Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 2001, 96, 1348–1360. [Google Scholar] [CrossRef]
- Candes, E.; Tao, T. The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Stat. 2007, 35, 2313–2351. [Google Scholar]
- Zhang, C.H. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 2010, 38, 894–942. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Samworth, R.; Wu, Y. Ultrahigh dimensional feature selection: Beyond the linear model. J. Mach. Learn. Res. 2009, 10, 2013–2038. [Google Scholar]
- Fan, J.; Lv, J. Sure independence screening for ultrahigh dimensional feature space. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2008, 70, 849–911. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Feng, Y.; Song, R. Nonparametric independence screening in sparse ultra-high-dimensional additive models. J. Am. Stat. Assoc. 2011, 106, 544–557. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Li, L.; Li, R.; Zhu, L. Model-free feature screening for ultrahigh-dimensional data. J. Am. Stat. Assoc. 2011, 106, 1464–1475. [Google Scholar] [CrossRef] [Green Version]
- Wang, H. Forward regression for ultra-high dimensional variable screening. J. Am. Stat. Assoc. 2009, 104, 1512–1524. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Honda, T.; Zhang, J.T. Forward variable selection for sparse ultra-high dimensional varying coefficient models. J. Am. Stat. Assoc. 2016, 111, 1209–1221. [Google Scholar] [CrossRef] [Green Version]
- Zhong, W.; Duan, S.; Zhu, L. Forward additive regression for ultrahigh dimensional nonparametric additive models. Stat. Sin. 2020, 30, 175–192. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Zhu, L.; Xu, C.; Li, R. Model-free forward screening via cumulative divergence. J. Am. Stat. Assoc. 2020, 115, 1393–1405. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R. Generalized Additive Models; Chapman and Hall: New York, NY, USA, 1990. [Google Scholar]
- Meier, K.; Van de Geer, S.; Bühlmann, P. Minimax optimal rates of estimation in high dimensional additive models. Ann. Stat. 2009, 47, 3779–3821. [Google Scholar]
- Gregory, K.; Mammen, E.; Wahl, M. Statistical inference in sparse high-dimensional additive models. Ann. Stat. 2021, 49, 1514–1536. [Google Scholar] [CrossRef]
- Lu, J.; Kolar, M.; Liu, H. Kernel meets sieve: Post-regularization confidence bands for sparse additive model. J. Am. Stat. Assoc. 2020, 115, 2084–2099. [Google Scholar] [CrossRef] [Green Version]
- Bai, R.; Moran, G.; Antonelli, J.; Cheng, Y.; Boland, M. Spike-and-slab group lassos for grouped regression and sparse generalized additive models. J. Am. Stat. Assoc. 2022, 117, 184–197. [Google Scholar] [CrossRef]
- Wang, X.; Leng, C. High dimensional ordinary least squares projection for screening variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 2016, 78, 589–611. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, Z. Extended Bayesian information criteria for model selection with large model spaces. Biometrika 2008, 95, 759–771. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, Z. Extended BIC for small-n-large-P sparse GLM. Stat. Sin. 2012, 22, 555–574. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Ma, Y.; Dai, W. Nonparametric independence screening in sparse ultra-high-dimensional varying coefficient models. J. Am. Stat. Assoc. 2014, 109, 1270–1284. [Google Scholar] [CrossRef] [Green Version]
- Liao, Z.; Shi, X. A nondegenerate Vuong test and post selection confidence intervals for semi/nonparametric model. Quant. Econ. 2020, 11, 983–1017. [Google Scholar] [CrossRef]
- Wille, A.; Zimmermann, P.; Vranová, E.; Fürholz, A.; Laule, O.; Bleuler, S.; Hennig, L.; Prelić, A.; Von Rohr, P.; Thiele, L.; et al. Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biol. 2004, 5, R92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Fan, D.; Wang, G. Heteromeric geranyl (geranyl) diphosphate synthase is involved in monoterpene biosynthesis in Arabidopsis flowers. Mol. Plant 2015, 8, 1434–1437. [Google Scholar] [CrossRef] [PubMed]
- Hao, N.; Zhang, H. A note on high-dimensional linear regression with interactions. Am. Stat. 2017, 71, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.; Tibshirani, R. Generalized additive models: Some applications. J. Am. Stat. Assoc. 1987, 82, 371–386. [Google Scholar] [CrossRef]
- Horowitz, J. Nonparametric estimation of a generalized additive model with an unknown link function. Econometrica 1987, 69, 499–513. [Google Scholar] [CrossRef]
- Schumaker, L.L. Spline Functions: Basic Theory; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
Approach | |||||||
---|---|---|---|---|---|---|---|
TP | FP | Time (s) | TP | FP | Time (s) | ||
AR Structure | |||||||
0.3 | FAR | 4.00 (0.00) | 0.00 (0.00) | 83.19 (9.80) | 4.00 (0.00) | 0.00 (0.00) | 166.26 (18.65) |
C-FS | 3.20 (0.40) | 5.21 (2.96) | 16.18 (5.38) | 3.34 (0.48) | 11.44 (5.38) | 39.64 (14.35) | |
GRIE | 4.00 (0.00) | 0.00 (0.00) | 2.37 (0.28) | 3.99 (0.10) | 0.01 (0.10) | 3.56 (0.77) | |
0.6 | FAR | 4.00 (0.00) | 0.00 (0.00) | 82.06 (9.77) | 4.00 (0.00) | 0.00 (0.00) | 168.16 (20.51) |
C-FS | 3.71 (0.46) | 4.81 (2.39) | 16.57 (4.28) | 3.70 (0.46) | 9.33 (4.88) | 34.61 (12.24) | |
GRIE | 3.99 (0.10) | 0.00 (0.00) | 2.40 (0.35) | 3.98 (0.14) | 0.03 (0.30) | 3.43 (0.72) | |
0.9 | FAR | 3.17 (0.60) | 0.00 (0.00) | 81.34 (9.48) | 3.09 (0.60) | 0.00 (0.00) | 168.70 (18.62) |
C-FS | 3.14 (0.51) | 2.44 (1.72) | 10.63 (3.01) | 3.14 (0.53) | 4.43 (2.96) | 19.14 (6.78) | |
GRIE | 3.71 (0.46) | 0.20 (0.40) | 2.22 (0.40) | 3.70 (0.46) | 0.21 (0.43) | 3.45 (0.76) | |
CS Structure | |||||||
0.3 | FAR | 4.00 (0.00) | 0.00 (0.00) | 83.60 (10.17) | 4.00 (0.00) | 0.00 (0.00) | 165.38 (19.00) |
C-FS | 3.45 (0.52) | 4.96 (2.97) | 16.11 (5.23) | 3.33 (0.47) | 11.69 (6.24) | 39.98 (16.38) | |
GRIE | 4.00 (0.00) | 0.09 (0.90) | 2.30 (0.39) | 4.00 (0.00) | 0.02 (0.20) | 3.57 (0.72) | |
0.6 | FAR | 4.00 (0.00) | 0.00 (0.00) | 84.24 (10.26) | 4.00 (0.00) | 0.01 (0.10) | 166.92 (18.64) |
C-FS | 3.74 (0.44) | 5.05 (2.98) | 16.82 (5.26) | 3.61 (0.55) | 10.26 (5.25) | 36.73 (13.38) | |
GRIE | 4.00 (0.00) | 0.23 (2.30) | 2.35 (0.37) | 4.00 (0.00) | 0.11 (0.62) | 3.41 (0.74) | |
0.9 | FAR | 3.03 (0.67) | 0.00 (0.00) | 85.57 (11.01) | 2.79 (0.70) | 0.00 (0.00) | 166.02 (18.65) |
C-FS | 2.63 (0.65) | 4.48 (3.47) | 13.35 (6.08) | 2.56 (0.67) | 9.70 (5.93) | 32.23 (15.07) | |
GRIE | 3.89 (0.31) | 1.47 (7.62) | 2.21 (0.35) | 3.79 (0.41) | 3.16 (17.90) | 3.44 (0.77) |
Approach | |||||||
---|---|---|---|---|---|---|---|
TP | FP | Time (s) | TP | FP | Time (s) | ||
AR Structure | |||||||
0.3 | FAR | 4.00 (0.00) | 0.00 (0.00) | 79.30 (11.14) | 4.00 (0.00) | 0.00 (0.00) | 165.38 (22.09) |
C-FS | 3.27 (0.45) | 5.38 (3.00) | 16.43 (5.40) | 3.33 (0.47) | 11.24 (4.85) | 39.44 (12.59) | |
GRIE | 4.00 (0.00) | 0.00 (0.00) | 2.40 (0.36) | 3.99 (0.10) | 0.00 (0.00) | 3.33 (0.68) | |
0.6 | FAR | 4.00 (0.00) | 0.00 (0.00) | 79.19 (12.07) | 4.00 (0.00) | 0.00 (0.00) | 163.64 (23.37) |
C-FS | 3.70 (0.46) | 4.42 (2.53) | 15.60 (4.49) | 3.77 (0.42) | 9.56 (4.29) | 35.74 (11.14) | |
GRIE | 3.99 (0.10) | 0.01 (0.10) | 2.31 (0.33) | 3.98 (0.14) | 0.03 (0.30) | 3.42 (0.67) | |
0.9 | FAR | 3.09 (0.68) | 0.00 (0.00) | 80.28 (10.89) | 3.01 (0.72) | 0.00 (0.00) | 163.88 (22.78) |
C-FS | 3.10 (0.48) | 2.28 (1.56) | 10.15 (2.86) | 3.15 (0.50) | 4.26 (2.20) | 19.12 (5.44) | |
GRIE | 3.71 (0.46) | 0.23 (0.51) | 2.28 (0.32) | 3.78 (0.42) | 0.16 (0.39) | 3.33 (0.67) | |
CS Structure | |||||||
0.3 | FAR | 4.00 (0.00) | 0.00 (0.00) | 80.28 (9.59) | 4.00 (0.00) | 0.00 (0.00) | 164.25 (19.31) |
C-FS | 3.51 (0.52) | 5.10 (2.99) | 16.50 (5.68) | 3.36 (0.48) | 10.87 (4.98) | 37.91 (13.02) | |
GRIE | 4.00 (0.00) | 0.00 (0.00) | 2.31 (0.34) | 3.98 (0.14) | 0.34 (3.30) | 3.38 (0.66) | |
0.6 | FAR | 4.00 (0.00) | 0.00 (0.00) | 80.12 (11.56) | 4.00 (0.00) | 0.01 (0.10) | 165.41 (20.04) |
C-FS | 3.72 (0.49) | 4.71 (2.57) | 16.04 (4.68) | 3.68 (0.49) | 9.79 (5.39) | 36.12 (14.41) | |
GRIE | 3.99 (0.10) | 0.00 (0.00) | 2.31 (0.29) | 4.00 (0.00) | 0.11 (0.65) | 3.40 (0.70) | |
0.9 | FAR | 3.00 (0.79) | 0.03 (0.17) | 79.62 (11.60) | 2.85 (0.78) | 0.02 (0.14) | 164.90 (19.25) |
C-FS | 2.73 (0.66) | 4.40 (2.81) | 13.56 (4.91) | 2.69 (0.63) | 10.82 (5.99) | 35.72 (15.68) | |
GRIE | 3.94 (0.24) | 3.13 (16.94) | 2.28 (0.35) | 3.82 (0.39) | 3.63 (18.13) | 3.30 (0.72) |
Approach | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AR Structure | |||||||||||
0.3 | FAR | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
C-FS | 1.00 | 0.20 | 1.00 | 1.00 | 0.20 | 1.00 | 0.34 | 1.00 | 1.00 | 0.34 | |
GRIE | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 1.00 | 0.99 | |
0.6 | FAR | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
C-FS | 1.00 | 0.71 | 1.00 | 1.00 | 0.71 | 0.98 | 0.72 | 1.00 | 1.00 | 0.70 | |
GRIE | 1.00 | 0.99 | 1.00 | 1.00 | 0.99 | 1.00 | 0.98 | 1.00 | 1.00 | 0.98 | |
0.9 | FAR | 0.80 | 0.49 | 0.97 | 0.91 | 0.28 | 0.82 | 0.42 | 0.98 | 0.87 | 0.23 |
C-FS | 0.50 | 0.67 | 0.97 | 1.00 | 0.21 | 0.50 | 0.67 | 0.97 | 1.00 | 0.22 | |
GRIE | 0.83 | 0.88 | 1.00 | 1.00 | 0.71 | 0.79 | 0.91 | 1.00 | 1.00 | 0.70 | |
CS Structure | |||||||||||
0.3 | FAR | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
C-FS | 0.99 | 0.46 | 1.00 | 1.00 | 0.46 | 1.00 | 0.33 | 1.00 | 1.00 | 0.33 | |
GRIE | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
0.6 | FAR | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
C-FS | 0.93 | 0.81 | 1.00 | 1.00 | 0.74 | 0.88 | 0.73 | 1.00 | 1.00 | 0.64 | |
GRIE | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
0.9 | FAR | 0.63 | 0.57 | 0.98 | 0.85 | 0.24 | 0.58 | 0.49 | 0.91 | 0.81 | 0.16 |
C-FS | 0.11 | 0.62 | 0.97 | 0.93 | 0.05 | 0.12 | 0.53 | 0.97 | 0.94 | 0.07 | |
GRIE | 0.93 | 0.96 | 1.00 | 1.00 | 0.89 | 0.87 | 0.92 | 1.00 | 1.00 | 0.79 |
Approach | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AR Structure | |||||||||||
0.3 | FAR | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
C-FS | 1.00 | 0.27 | 1.00 | 1.00 | 0.27 | 1.00 | 0.33 | 1.00 | 1.00 | 0.33 | |
GRIE | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 1.00 | 0.99 | |
0.6 | FAR | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
C-FS | 1.00 | 0.70 | 1.00 | 1.00 | 0.70 | 0.99 | 0.78 | 1.00 | 1.00 | 0.77 | |
GRIE | 1.00 | 0.99 | 1.00 | 1.00 | 0.99 | 1.00 | 0.99 | 1.00 | 0.99 | 0.98 | |
0.9 | FAR | 0.81 | 0.47 | 0.95 | 0.86 | 0.28 | 0.82 | 0.45 | 0.94 | 0.80 | 0.26 |
C-FS | 0.42 | 0.70 | 0.98 | 1.00 | 0.17 | 0.53 | 0.65 | 0.97 | 1.00 | 0.21 | |
GRIE | 0.82 | 0.89 | 1.00 | 1.00 | 0.71 | 0.84 | 0.94 | 1.00 | 1.00 | 0.78 | |
CS Structure | |||||||||||
0.3 | FAR | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
C-FS | 0.99 | 0.52 | 1.00 | 1.00 | 0.52 | 0.99 | 0.37 | 1.00 | 1.00 | 0.36 | |
GRIE | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 0.98 | |
0.6 | FAR | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
C-FS | 0.93 | 0.79 | 1.00 | 1.00 | 0.74 | 0.92 | 0.76 | 1.00 | 1.00 | 0.69 | |
GRIE | 1.00 | 0.99 | 1.00 | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
0.9 | FAR | 0.54 | 0.65 | 0.97 | 0.84 | 0.28 | 0.55 | 0.55 | 0.94 | 0.81 | 0.24 |
C-FS | 0.12 | 0.66 | 0.97 | 0.98 | 0.09 | 0.14 | 0.61 | 0.97 | 0.97 | 0.08 | |
GRIE | 0.97 | 0.97 | 1.00 | 1.00 | 0.94 | 0.88 | 0.94 | 1.00 | 1.00 | 0.82 |
Approach | |||||||
---|---|---|---|---|---|---|---|
TP | FP | Time (s) | TP | FP | Time (s) | ||
0.4 | FAR | 4.00 (0.00) | 0.59 (0.51) | 81.85 (10.28) | 3.98 (0.20) | 0.57 (0.50) | 168.16 (20.16) |
C-FS | 4.00 (0.00) | 5.32 (2.97) | 18.74 (5.35) | 4.00 (0.00) | 11.40 (5.37) | 42.87 (15.18) | |
GRIE | 4.00 (0.00) | 0.04 (0.24) | 2.41 (0.36) | 4.00 (0.00) | 0.06 (0.34) | 3.59 (0.64) | |
0.6 | FAR | 3.94 (0.28) | 1.09 (0.49) | 80.25 (9.06) | 3.86 (0.49) | 1.07 (0.48) | 164.35 (18.90) |
C-FS | 4.00 (0.00) | 6.05 (2.88) | 19.32 (5.19) | 4.00 (0.00) | 12.11 (5.37) | 43.61 (14.17) | |
GRIE | 4.00 (0.00) | 0.17 (0.49) | 2.33 (0.34) | 4.00 (0.00) | 0.18 (0.54) | 3.43 (0.63) | |
0.8 | FAR | 3.66 (0.73) | 1.26 (0.50) | 80.04 (9.10) | 3.68 (0.72) | 1.22 (0.54) | 164.05 (18.76) |
C-FS | 3.81 (0.42) | 5.88 (2.82) | 18.62 (5.41) | 3.85 (0.36) | 12.13 (5.18) | 42.92 (13.12) | |
GRIE | 3.95 (0.22) | 0.38 (0.72) | 2.37 (0.34) | 3.89 (0.31) | 0.27 (0.63) | 3.45 (0.75) |
Approach | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.4 | FAR | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 0.99 |
C-FS | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
GRIE | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
0.6 | FAR | 0.99 | 0.99 | 0.98 | 0.98 | 0.95 | 0.96 | 0.98 | 0.97 | 0.95 | 0.92 |
C-FS | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
GRIE | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
0.8 | FAR | 0.92 | 0.91 | 0.91 | 0.92 | 0.81 | 0.90 | 0.92 | 0.93 | 0.93 | 0.83 |
C-FS | 0.93 | 0.97 | 0.96 | 0.95 | 0.82 | 0.94 | 0.97 | 0.97 | 0.97 | 0.85 | |
GRIE | 1.00 | 1.00 | 0.97 | 0.98 | 0.95 | 0.97 | 1.00 | 0.95 | 0.97 | 0.89 |
Approach | Model Size | SNV | A-PE |
---|---|---|---|
FAR | 2.10 (0.30) | 0.00 (0.00) | 0.052 (0.011) |
C-FS | 19.26 (5.39) | 8.71 (5.10) | 0.047 (0.012) |
GRIE | 5.07 (0.95) | 0.00 (0.00) | 0.043 (0.010) |
Variable | FAR | C-FS | GRIE |
---|---|---|---|
RM | 100 | 100 | 100 |
AGE | 0 | 99 | 0 |
RAD | 0 | 60 | 6 |
TAX | 0 | 59 | 7 |
PTRATIO | 0 | 100 | 68 |
B | 0 | 92 | 99 |
LSTAT | 100 | 100 | 100 |
CRIM | 10 | 100 | 80 |
ZN | 0 | 97 | 0 |
INDUS | 0 | 22 | 0 |
CHAS | 0 | 26 | 0 |
NOX | 0 | 100 | 47 |
DIS | 0 | 100 | 0 |
Approach | Model Size | A-PE |
---|---|---|
FAR | 1.00 (0.00) | 0.289 (0.099) |
C-FS | 10.15 (3.34) | 0.282 (0.181) |
GRIE | 1.76 (1.18) | 0.276 (0.093) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Jin, H.; Jiang, X.; Li, J. Model Selection for High Dimensional Nonparametric Additive Models via Ridge Estimation. Mathematics 2022, 10, 4551. https://doi.org/10.3390/math10234551
Wang H, Jin H, Jiang X, Li J. Model Selection for High Dimensional Nonparametric Additive Models via Ridge Estimation. Mathematics. 2022; 10(23):4551. https://doi.org/10.3390/math10234551
Chicago/Turabian StyleWang, Haofeng, Hongxia Jin, Xuejun Jiang, and Jingzhi Li. 2022. "Model Selection for High Dimensional Nonparametric Additive Models via Ridge Estimation" Mathematics 10, no. 23: 4551. https://doi.org/10.3390/math10234551
APA StyleWang, H., Jin, H., Jiang, X., & Li, J. (2022). Model Selection for High Dimensional Nonparametric Additive Models via Ridge Estimation. Mathematics, 10(23), 4551. https://doi.org/10.3390/math10234551