Pauli Gaussian Fibonacci and Pauli Gaussian Lucas Quaternions
Abstract
:1. Introduction
2. The Pauli Gaussian Fibonacci Quaternions
- (ii)
- If we use Equation (1) and the recurrence relation of the Gaussian Fibonacci numbers, the proof can be easily seen.
- (iii)
- Using Equation (1) and the recurrence relation of the Gaussian Fibonacci numbers, we obtainBy substituting the identity [3] into the previous equation we get
- (iv)
- Multiplying both sides of the Pauli Gaussian Fibonacci quaternions , by and respectively gives
3. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gauss, C.F. Theoria Residuorum Biquadraticorum; Commentatio Prima Sumtibus Dieterichtianis, Gottingae; Cambridge University Press: Cambridge, UK, 1832. [Google Scholar]
- Horadam, A.F. Complex Fibonacci Numbers and Fibonacci Quaternions. Am. Math. Mon. 1963, 70, 289–291. [Google Scholar] [CrossRef]
- Jordan, J.H. Gaussian Fibonacci and Lucas Numbers. Fibonacci Quart. 1965, 3, 315–318. [Google Scholar]
- Koshy, T. Fibonacci and Lucas Numbers with Applications; Wiley-Interscience Publication: New York, NY, USA, 2001. [Google Scholar]
- Berzsenyi, G. Gaussian Fibonacci Numbers. Fibonacci Quart. 1977, 15, 233–236. [Google Scholar]
- Mc Carthy, J.M. Introduction to Theoretical Kinematics; MIT Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Shoemake, K. Animation Rotation with Quaternion Curves. In Proceedings of the SIGGRAPH ’85: 12th Annual Conference on Computer Graphics and Interactive Techniques, San Francisco, CA, USA, 22–26 July 1985; Volume 19, pp. 245–254. [Google Scholar]
- Silberstein, L. LXXVI. Quaternionic Form of Relativity. Lond. Edinb. Dubl. Phil. Mag. 1912, 23, 790–809. [Google Scholar] [CrossRef] [Green Version]
- Blake, C.S. Sporadic SICs and the Normed Division Algebras. Found. Phys. 2017, 47, 1060–1064. [Google Scholar]
- Wu, J.; Sun, Y.; Wang, M.; Liu, M. Hand-eye Calibration: 4-D procrustes Analysis Approach. IEEE Trans. Instrum. Meas. 2019, 69, 2966–2981. [Google Scholar] [CrossRef]
- Kopp, M.; Kreil, D.; Neun, M.; Jonietz, D.; Martin, H.; Herruzo, P.; Gruca, A.; Soleymani, A.; Wu, F.; Liu, Y.; et al. Traffic4cast at Neurips 2020—Yet More on the Unreasonable Effectiveness of Gridded Geo-spatial Processes. In Proceedings of the NeurIPS 2020 Competition and Demonstration Track, Virtual Event, 6–12 December 2021; Escalante, H.J., Hofmann, K., Eds.; Volume 133, pp. 325–343. [Google Scholar]
- Saoud, L.S.; Al-Marzouqi, H. Metacognitive Sedenion-Valued Neural Network and Its Learning Algorithm. IEEE Access 2020, 8, 144823–144838. [Google Scholar] [CrossRef]
- Lidl, R.; Niederreiter, H. Introduction to Finite Fields and Their Applications; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Akkus, I.; Kızılaslan, G. On Some Properties of Tribonacci Quaternions. An. Ştiinţ. Univ. Ovidius Constanta 2018, 26, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Akyiğit, M.; Hidayet, H.K.; Tosun, M. Fibonacci Generalized Quaternions. Adv. Appl. Clifford Algebr. 2014, 24, 631–641. [Google Scholar] [CrossRef]
- Bilgici, G.; Tokeşer, Ü.; Ünal, Z. Fibonacci and Lucas Sedenions. J. Integer Seq. 2017, 20, 1–11. [Google Scholar]
- Catarino, P.; Campos, H. From Fibonacci Sequence to More Recent Generalisations. In Mathematics and Its Applications in Science and Engineering; Springer: Cham, Swiztherland, 2022. [Google Scholar]
- Cerda-Morales, G. On a Generalization for Tribonacci Quaternions. Mediterr. J. Math. 2017, 14, 239. [Google Scholar] [CrossRef] [Green Version]
- Cerda-Morales, G. The Unifying Formula for All Tribonacci-type Octonions Sequences and Their Properties. Konuralp J. Math. 2019, 7, 292–299. [Google Scholar]
- Cereceda, J.L. Binet’s formula for generalized tribonacci numbers. Int. J. Math. Edu. Sci. Technol. 2015, 46, 1235–1243. [Google Scholar] [CrossRef]
- Flaut, C.; Shpakivskyi, V. On Generalized Fibonacci Quaternions and Fibonacci-Narayana Quaternions. Adv. Appl. Clifford Algebr. 2013, 23, 673–688. [Google Scholar] [CrossRef] [Green Version]
- Halici, S.; Karatas, A. On a Generalizaton for Fibonacci Quaternions. Chaos Solitons Fractals 2017, 98, 178–182. [Google Scholar] [CrossRef]
- Halici, S. On Fibonacci Quaternions. Adv. Appl. Clifford Algebr. 2017, 22, 321–327. [Google Scholar] [CrossRef]
- Iyer, M.R. Some Results on Fibonacci Quaternions. Fibonacci Quart. 1969, 7, 201–210. [Google Scholar]
- Karataş, A.; Halıcı, S. Horadam Octonions. An. Ştiinţ. Univ. Ovidius Constanta 2017, 25, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Kızılateş, C.; Kirlak, S. A New Generalization of Fibonacci and Lucas Type Sedenions. J. Discret. Math. Sci. Cryptogr. 2022, 1–12. [Google Scholar] [CrossRef]
- Savin, D. Some Properties of Fibonacci Numbers, Fibonacci Octonions, and Generalized Fibonacci-Lucas Octonions. Adv. Differ. Equ. 2015, 2015, 298. [Google Scholar] [CrossRef] [Green Version]
- Soykan, Y. Tribonacci and Tribonacci-Lucas Sedenions. Mathematics 2019, 7, 74. [Google Scholar] [CrossRef] [Green Version]
- Soykan, Y. Tetranacci and Tetranacci-Lucas Quaternions. Asian Res. J. Math. 2019, 15, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Soykan, Y.; Okumuş, İ.; Taşdemir, E. On Generalized Tribonacci Sedenions. Sarajevo J. Math. 2020, 16, 103–122. [Google Scholar]
- Soykan, Y.; Özmen, N.; Göcen, M. On Generalized Pentanacci Quaternions. Tbil. Math. J. 2020, 13, 169–181. [Google Scholar] [CrossRef]
- Spickerman, W.R. Binet’s Formula for the Tribonacci Sequence. Fibonacci Quart. 1982, 20, 118–120. [Google Scholar]
- Halici, S. On Complex Fibonacci Quaternions. Am. Math. Mon. 2013, 23, 105–112. [Google Scholar] [CrossRef]
- Halici, S. On Quaternion-Gaussian Lucas Numbers. Math. Meth. Appl. Sci. 2021, 44, 7601–7606. [Google Scholar] [CrossRef]
- Halici, S.; Cerda-Morales, G. On Quaternion-Gaussian Fibonacci Numbers and Their Properties. An. Ştiinţ. Univ. Ovidius Constanta 2021, 29, 71–82. [Google Scholar] [CrossRef]
- Condon, E.U.; Morse, P.M. Quantum Mechanics; McGraw-Hill: New York, NY, USA, 1929. [Google Scholar]
- Kim, J.E. A Representation of de Moivre’s Formula Over Pauli Quaternions. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2017, 9, 145–151. [Google Scholar]
- Aydın, F.T. Pauli-Fibonacci Quaternions. Notes Number Theory Discret. Math. 2021, 27, 184–193. [Google Scholar] [CrossRef]
- Bajorska-Harapińska, B.; Smoleń, B.; Wituła, R. On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis. Adv. Appl. Clifford Algebr. 2019, 29, 54. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azak, A.Z. Pauli Gaussian Fibonacci and Pauli Gaussian Lucas Quaternions. Mathematics 2022, 10, 4655. https://doi.org/10.3390/math10244655
Azak AZ. Pauli Gaussian Fibonacci and Pauli Gaussian Lucas Quaternions. Mathematics. 2022; 10(24):4655. https://doi.org/10.3390/math10244655
Chicago/Turabian StyleAzak, Ayşe Zeynep. 2022. "Pauli Gaussian Fibonacci and Pauli Gaussian Lucas Quaternions" Mathematics 10, no. 24: 4655. https://doi.org/10.3390/math10244655
APA StyleAzak, A. Z. (2022). Pauli Gaussian Fibonacci and Pauli Gaussian Lucas Quaternions. Mathematics, 10(24), 4655. https://doi.org/10.3390/math10244655